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BACKGROUND METHODOLOGY EXPERIMENTAL RESULTS

* Hyperparameter Optimization (HPO) aims to automatically tune hyperparameters Estimation of Efficient and Saturation Points e FastBO shows strong anytime performance, gaining an earlier advantage.
to achieve state-of-the-art machine learning models. Two important directions of HPO For a given learning curve C,; (r) of hyperparameter C()nﬁgurati()n \;, where r represents — — —— oerbond . PASHA EOHS  — ACOR  —— BOHB  —— DR oerne s
are model-based and multi-fidelity methods. the resource level (also referred to as fidelity), we formally define the efficient point and Airlines Albert Christine Covertype Fashion-MNIST

* Model-based HPO methods are mostly based on the Bayesian optimization (BO) saturation point as follows. ’:;Z: | 75 .
framework, which iterates three steps: (i) fully evaluate a hyperparameter configu- . . . . . . . . © . oA 86-

. o 11 ps: (1 o YPEIP 5 The efficient point e; of \; is defined as: The saturation point s; of \; is defined as: S 65- = |
ration to get its final fidelity performance, (i) update the surrogate model based on , , , , 3 61 . 64
. . e; = min{r | C;(r) — C;(2r) < 41}, where s; = min{r | Vr’' > r, |C;(r")—C;(r)| < da}, S oo a2

the performance, and (iii) select the next contiguration based on the surrogate model. . . . . e s5-
S , , , 01 15 a predefined small threshold. where 09 15 a predefined small threshold. 2 5. N 30-
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els, known as the fidelities. Traditional methods follow the successive halving (SHA) e Well-clock ime (secands) Walclock fime (seconds) _ alclock ime (seconds Wal-clock i (seconds) - Waiclock time (seconds)
framework, which evaluates many random configurations at a low fidelity and pro- Remarks: n 06 0.9 4

. . . . . . . -== Efficient point & performance 0.5- 0.8 0.9- 10-20.
motes well-performing configurations to continue with increasing resources. e The efficient points balance resource usage and perfor- & -~ Saturation point & performance » - 040
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. . : : : " 1gure 1: lllustration ot the (a) NAS-Bench-201 benchmark (b) FCNet benchmark
e Model-based methods require a costly full evaluation of each hyperparameter con- imate final fidelities. K . , , ,
€y points. Figure 2: Comparison of anytime performance.

figuration to fit the surrogate model. Learning Curve Modeling

FastBO estimates the learning curve for each configuration A; based on its observation
* Model-based multi-fidelity methods fail to find appropriate fidelities for the config- set O = {(r,y" ) }rer . Table 1: Models used

* Multi-fidelity methods use a simple random configuration search. * FastBO shows high efficiency on configuration identification.

Table 2: Comparison of relative efficiency on configuration identification.

urations, because low fidelity performance cannot always indicate the final fidelit . . .
rformance b Y Y  Constructing a parametric learning curve model by com- ————— FastBO BO  PASHA A-BOHB A-CQR BOHB  DyHPO Hyper-Tune

P ' bining three parametric models into a single model: Model Formula Val. error 22.9102 23.0403 251495 23.54917 31.6479 32.5408 23.04093 23.0402
Key Challenge to addreSS: . . . C(T‘¢) _ Z (D C (T‘H ) POW3 Y = d - CLZU_Q COVertype WC time (h) 0'7::0.3 2°9::0.7 3°9::1.0 2°O::1.0 3°9::0.2 2°5::1.O 1°7::O.6 1°8::O.7
What is the appropriate fidelity for each confiquration to fit the surrogate model? In other je{1,2,3y J IV TP EXP3 4 = d+ e 0xth Rel. efficiency 1.00 025 0.18  0.37 019 029 041 040
WOI‘dS., Wthh fldehty can provide performance observations that reliably indicate the ® Estlmatlng parameters ¢ in the parametric model via max- 1.OG? Yy = d +q lOg(Qf) et Val. error 55.3105 57.4415 55.7403 55.841¢ 55.54109 55.5411 55.5410 55.3490
final fidelity performance? imum likelihood estimation. —_— 1 Cog WCtime (h) 22407 66500 254112 5911 60415 32407 43410 3din
Kev ideas of FastBO: Rel. efficiency 1.00 034 090 038 037 068 051  0.67
. Tz), address the key challenge, FastBO identifies an efficient point for each configuration Wal‘m-lltp >tage - - - Val. loss 26.3126 2604444 26.8495 26.3163 271442 26.8456 274423 28.7413

> HeRey e 5 , pot Hetta e Preparing the observation set O}’ for each configuration. Slice  WC time (h) 0.4 3.1 19 71 75 7 75 18
to be the fidelity to fit the surrogate model, instead of evaluating all the configurations L . . . . L . st s
. 11 e Early terminating configurations with consecutive performance deterioration. Rel. efficiency 1.00  0.13 035  0.20 017 019 017  0.24

at the same, fixed fidelity.
e FastBO also identifies a saturation point for each configuration to be an approximation Post-processing Stage o Results shows the effectiveness of the adaptive fidelity identification strategy.

of the final fidelity. e Finding a small number of well-performing hyperparameter configurations and pro- * The adaptive strategy of FastBO can extend any single-fidelity method, even the
* The learning curve modeling module enables adaptive derivation of the key points. moting them for saturation-level evaluations. model-free one, to multi-fidelity setting, demonstrating the generality of FastBO.
* The warm-up stage and post-processing stages are designed to enable judicious early- e [dentifying the best configuration and obtaining its performance. 1075 —— S‘() pop | meNetloA20 o Covertype T S“i g aeeNetlE 20 o Covertype
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