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Background and Motivation

• The performance of machine learning models strongly depends on the 
choice of hyperparameters.
• Hyperparameter Optimization (HPO): automatically find 

hyperparameters or architectures that yield SOTA performance.

Hyperparameter 
configuration λ

Performance 𝑓 𝜆  

(descending metrics)

Hyperparameter 
optimizer

𝜆∗ = 𝑎𝑟𝑔	min
"∈$

𝑓(𝜆)

Black-box



3

Background and Motivation

• Crucial HPO directions: model-based methods, multi-fidelity methods.
• Model-based methods: follow Bayesian optimization (BO) framework.

• Major limitation: require expensive full evaluation of each configuration 
to get its final (highest) fidelity performance. 
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Background and Motivation

• Crucial HPO directions: model-based methods, multi-fidelity methods.
• Multi-fidelity methods: consider performance at different resource 

levels (fidelities); follow successive halving (SHA) framework.

• Major limitation: use a simple random configuration search.
resource level/ fidelity level
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Background and Motivation

• Combining model-based and multi-fidelity methods: replace the random 
sampling in SHA with BO.
• Issue: learning curves of different configurations can intersect.
• Limitation: early performance got through fixed low fidelities (e.g. 1, 2, 

4, 8, …) cannot always indicate high-fidelity performance.
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the surrogate model?
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FastBO Methodology

• “Efficient point”: 𝑒- = min r	 𝐶- 𝑟 − 𝐶- 2𝑟 < 	𝛿.} 
• When resources are doubled (from 𝑟 to 2𝑟), the performance 

improvement falls below a small threshold.
• Get strong performance while still efficiently using resources.
• Use as the fidelity to fit the surrogate model.
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FastBO Methodology

• “Saturation point”: 𝑠- = min r	 ∀𝑟/ > 𝑟, |𝐶- 𝑟′ − 𝐶- 𝑟 < 	𝛿0} 
• Performance does not have notable variations with more resources.
• Use as a final fidelity approximation.
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FastBO Methodology

• Process overview

Warm-up Learning curve 
modeling
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• Adaptively extract 
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learning curve.
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Generality of FastBO

• FastBO can be generalized to any single-fidelity methods.
• Extend single-fidelity methods to multi-fidelity setting: evaluate each 

config to the efficient point instead of to the final fidelity.
• Even model-free methods can be improved by our extension strategy.

Figure 1. Performance of single-fidelity methods CQR, BORE, REA and their multi-fidelity variants using our extension method.
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Experimental Evaluation

• Anytime performance
• FastBO can handle various performance metrics.
• FastBO gains an advantage earlier than other methods.

Figure 2. Performance on the LCBench, NAS-Bench-201, and FCNet benchmarks.
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Experimental Evaluation

• Efficiency on configuration identification
• FastBO saves 10% to 87% wall-clock time when achieving up to 9.6% 

better performance values.
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Experimental Evaluation

• Evaluating results demonstrate the effectiveness of the adaptive fidelity 
identification strategy.

Figure 3. Performance of FastBO that adaptively sets ri = ei with the schemes that use fixed ri for all configurations.
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Conclusion

1. We propose a multi-fidelity model-based HPO method that adaptively 
decides the fidelities for configurations, thanks to the introduced 
concepts of efficient and saturation points.

2. We develop a learning curve modeling module to adaptively extract the 
key points, a warm-up stage for early-termination detection, and a 
post-processing stage for efficient evaluation.

3. Our strategy can be used to extend any single-fidelity methods to multi-
fidelity setting.


