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* The performance of machine learning models strongly depends on the
choice of hyperparameters.

* Hyperparameter Optimization (HPO): automatically find
hyperparameters or architectures that yield SOTA performance.
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Background and Motivation

* Crucial HPO directions: model-based methods, multi-fidelity methods.
* Model-based methods: follow Bayesian optimization (BO) framework.
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* Major limitation: require of each configuration
to get its
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* Crucial HPO directions: model-based methods, multi-fidelity methods.

* Multi-fidelity methods: consider performance at different resource
levels (fidelities); follow successive halving (SHA) framework.
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* Major limitation: use a simple configuration search.
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 Combining model-based and multi-fidelity methods: replace the random
sampling in SHA with BO.

* Issue: learning curves of different configurations can intersect.

* Limitation: early performance got through (e.g. 1, 2,
4, 8, ...) cannot always indicate high-fidelity performance.

Challenge: What is the appropriate
fidelity for each configuration to fit
the surrogate model?

Performance
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e “Efficient point”: ¢; = min{r |C;(r) — C;(2r) < §;}
* When resources are doubled (from 7 to 27), the performance
improvement falls below a small threshold.

* Get strong performance while still efficiently using resources.
e Use as the fidelity to fit the surrogate model.

= Cy(r)

Definition 1 (Efficient point). For a given learning curve Ca(r)

Ci(r) of hyperparameter configuration \;, where r repre- == Efficient point & performance
sents the resource level (also referred to as fidelity), the ef-
ficient point e; of A; is defined as: e; = min{r | C;(r) —

A " Crossing point
Ci(2r) < 01}, where 61 is a predefined small threshold.

Performance
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e “Saturation point”: s; = min{r |vr’' >r, |C;(r") — C;(r) < §,}
* Performance does not have notable variations with more resources.
* Use as a final fidelity approximation.

=== C4(r)

Cy(r)

Definition 2 (Saturation point). For a given learning curve — = Saturation point & performance

Ci(r) of configuration \;, where r represents the resource
level (also referred to as fidelity), the saturation point s; of
A; is defined as: s; = min{r | ¥r' > r,|C;(r") — Ci(v)| <

: Crossing point
2 }, where 05 is a predefined small threshold.

Performance

S2 Fidelity S1
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* Process overview

: . Stop evaluating at
Eacl; Warm-up LearnlggIFurve Efflc-lent &. efficient point.
configuration modeling saturation points - Fit surrogate model.

* Evaluate to the e Estimate the learning * Adaptively extract
warm-up point. curve from the the points from the
* Getthe early observation set. learning curve.

observation set.

e Resume some best-

Post-processing performing configurations
l to saturation point.
Optimal

configuration
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* FastBO can be generalized to any single-fidelity methods.

* Extend single-fidelity methods to multi-fidelity setting: evaluate each
config to the efficient point instead of to the final fidelity.

* Even model-free methods can be improved by our extension strategy.
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Figure 1. Performance of single-fidelity methods CQR, BORE, REA and their multi-fidelity variants using our extension method.
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* Anytime performance
* FastBO can handle various performance metrics.
* FastBO gains an advantage earlier than other methods.
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Figure 2. Performance on the LCBench, NAS-Bench-201, and FCNet benchmarks.
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e Efficiency on configuration identification

* FastBO saves 10% to 87% wall-clock time when achieving up to 9.6%
better performance values.

Table 2. Comparison of relative efficiency on conﬁgurauon identification. FastBO is set as the baseline with a relative efficiency of 1.00.
W, ll-clock ume (abbr WC time) rcporu. the clapsed time spent for cach method on finding configurations with similar performance

Experimental Evaluation

A\

metrics, i.e., validation error ( x 10~ ?) for Covertype and ImageNet16-120 and validation loss (x 10%) for Slice.
Metric Method
FastBO BO PASHA A-BOHB A-CQR BOHB DyHPO Hyper-Tune
Dataset
Val. error 229,902 23.0:03 251325 23541 316419 325408 230403 23.04q-
Covertype WCtime (h) 07563 2907 3950 2040 39402 25510 17306 18407
Rel efficiency 1.00 0.25 0.18 0.37 0.19 0.29 0.41 0.40
ImageNet Val. error 55.33 02 57. 4 L1 55.74{03 558} L6 55.5:“).9 555; 1.1 555{ 1.0 55.3:10
]6_3;:,,0 WCtime (h) 22,47 6.6—“19 2552 594, 6.0,3 32507 4354,0 344,
- Rel. efficiency 1.00 0.34 0.90 0.38 0.37 0.68 0.51 0.67
Val. loss 26-312,6 26.4114 26. 8495 26.3 63 27.1&43 268 LS54 27.4}13 28.7:L3
Slice WC time (h) 0.44;—0.1 3-]{0_7 1. ’409 2 +07 2.5i0_7 2. 2-09 2.5_{_0‘5 1.8,_:_().6
Rel efficiency 1.00 0.13 0.35 0.20 0.17 0.19 0.17 0.24
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* Evaluating results demonstrate the effectiveness of the adaptive fidelity

identification strategy.
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Figure 3. Performance of FastBO that adaptively sets r; = e; with the schemes that use fixed r; for all configurations.
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1. We propose a multi-fidelity model-based HPO method that adaptively
decides the fidelities for configurations, thanks to the introduced
concepts of efficient and saturation points.

2. We develop a learning curve modeling module to adaptively extract the
key points, a warm-up stage for early-termination detection, and a
post-processing stage for efficient evaluation.

3. Our strategy can be used to extend any single-fidelity methods to multi-
fidelity setting.
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