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Abstract—Bayesian networks (BNs) are a widely used graphi-
cal model in machine learning for representing knowledge with
uncertainty. The mainstream BN structure learning methods
require performing a large number of conditional independence
(CI) tests. The learning process is very time-consuming, especially
for high-dimensional problems, which hinders the adoption of
BNs to more applications. Existing works attempt to accelerate
the learning process with parallelism, but face issues including
load unbalancing, costly atomic operations and dominant parallel
overhead. In this paper, we propose a fast solution named Fast-
BNS on multi-core CPUs to enhance the efficiency of the BN
structure learning. Fast-BNS is powered by a series of efficiency
optimizations including (i) designing a dynamic work pool to
monitor the processing of edges and to better schedule the
workloads among threads, (ii) grouping the CI tests of the edges
with the same endpoints to reduce the number of unnecessary
CI tests, (iii) using a cache-friendly data storage to improve the
memory efficiency, and (iv) generating the conditioning sets on-
the-fly to avoid extra memory consumption. A comprehensive
experimental study shows that the sequential version of Fast-
BNS is up to 50 times faster than its counterpart, and the parallel
version of Fast-BNS achieves 4.8 to 24.5 times speedup over the
state-of-the-art multi-threaded solution. Moreover, Fast-BNS has
a good scalability to the network size as well as sample size.

I. INTRODUCTION

Bayesian networks (BNs) [1] are probabilistic graphical

models that employ directed acyclic graphs (DAGs) to com-

pactly represent a set of random variables and their condi-

tional dependency. The graphical nature of BNs makes them

well-suited for representing knowledge with uncertainty and

efficient reasoning. They have been successfully applied in

a wide range of real-world applications [2]–[5]. With recent

growing demand for interpretable machine learning models,

BNs have attracted much research attention since they are

inherently interpretable models [6], [7].

One crucial task of training BNs is structure learning, which

aims to learn DAGs that are well matched the observed

data. There are two common approaches for BN structure

learning from data: score-based approaches and constraint-

based approaches. The score-based approaches use a scoring

function to measure the fitness of DAGs to the data and find

the highest score out of all the possible DAGs, which makes

the number of possible DAGs super-exponential to the number

of dimensions (i.e., variables) of the learning problems [8].

On the other hand, the constraint-based approaches perform

a number of conditional independence (CI) tests to identify

the conditional independence relations among the random

variables and use these relations as constraints to construct

∗ Zeyi Wen is the corresponding author.

BNs. This category of methods often runs in a polynomial

time, and is commonly used in high-dimensional problems [9].

A fundamental constraint-based algorithm is the PC (named

after its authors Peter and Clark) algorithm [10] which starts

from a complete undirected graph and removes edges in

consecutive depths based on CI tests. PC-stable [11] solves

the order-dependent issue in the original PC algorithm and

produces less error. The PC-stable algorithm has been widely

used in various applications [12], [13] and is implemented

in different mainstream BN packages such as bnlearn [14],

pcalg [15] and tetrad [16]. Furthermore, most constraint-based

methods are improved versions of the PC-stable algorithm or

proceed along similar lines of the PC-stable algorithm.

However, a key barrier that hinders the wider usage of the

PC-stable algorithm is its long execution time for performing

a large number of CI tests, especially for high-dimensional

data sets. It is non-trivial to perform algorithmic improvements

for the PC-stable algorithm [17]. Several research works have

been conducted on the acceleration of the PC-stable algorithm

on multi-core CPUs exploiting parallelization techniques [18]–

[20]. The most common way is to parallelize the processing

of different edges of the network inside each depth, which

is an intuitive idea due to the order-independent property

of the PC-stable algorithm. However, the direct edge-level

parallelism is load unbalanced, because the workloads of CI

tests for different edges is highly different. Another approach

to parallelize the algorithm is by processing multiple samples

inside each CI test, which is a finer granularity of parallelism.

However, this approach requires many atomic operations and

has a large parallel overhead, which decreases the efficiency.

To address the issues of workload balancing, atomic op-

erations and large parallel overhead, we propose Fast-BNS, a

fast BN structure learning solution. Fast-BNS is equipped with

a dynamic work pool to contain the edges to be processed

and their processing progresses with regard to the CI tests.

The work pool is able to monitor the processing progresses

of edges, terminating the completed edges in time to avoid

unnecessary CI tests. Moreover, with the work pool, we can

better schedule the work among threads to maintain workload

balancing. Each thread always processes a group of CI tests

that are required to be processed, and hence all the threads

are active during this process. As the CI tests are independent

and each CI test requires a reasonable amount of computation,

Fast-BNS can be performed without atomic operations and can

amortize the parallel overhead. To further enhance Fast-BNS,

we develop a series of efficiency optimizations including (i)

grouping the CI tests of the edges with the same endpoints
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to reduce the number of CI tests, (ii) using a cache-friendly

data storage to improve memory efficiency and (iii) generating

the conditioning sets of the CI tests on-the-fly and in parallel

to avoid extra memory consumption. To summarize, we make

the following major contributions in this paper.

• We propose Fast-BNS to accelerate the BN structure

learning on multi-core CPUs. Fast-BNS employs a dy-

namic work pool to monitor the processing of edges and

schedule the workloads among threads, which solves the

efficiency issues of load unbalancing. The granularity of

parallelism used in Fast-BNS avoids atomic operations

and amortizes the parallel overhead.

• We develop a series of novel techniques to further im-

prove the efficiency of Fast-BNS. First, we propose to

group the CI tests of the edges with the same endpoints

together to reduce the number of unnecessary CI tests.

Second, we employ a cache-friendly data storage to

improve the memory efficiency. Lastly, we compute the

conditioning sets on-the-fly and in parallel to reduce

memory consumption.

• We conduct experiments to study the effectiveness of our

proposed techniques. Experimental results show that the

sequential version of Fast-BNS outperforms the existing

work bnlearn [14] and tetrad [16] by up to 50 times.

When compared with the multi-threaded implementation

in bnlearn [18], the parallel version of Fast-BNS is 4.8

to 24.5 times faster. Finally, we show that Fast-BNS has

good scalability to the network size and sample size.

II. RELATED WORK

Bayesian Networks (BNs) are powerful models for repre-

sentation learning and reasoning under uncertainty in artificial

intelligence. BNs have recently attracted much attention within

the research and industry communities. A crucial aspect of

using BNs is to learn the dependency graph of a BN from data,

which is called structure learning. In this paper, we categorize

the related work on BN structure learning into two groups:

score-based approaches and constraint-based approaches.

Score-based approaches [21]–[27] seek the best directed

acyclic graph (DAG) according to scoring functions that mea-

sure the fitness of BN structures to the observed data. Widely

adopted scores include BDeu, BIC, and MDL. However, the

number of possible DAGs is super-exponential to the number

of variables [8]. Hence, many score-based approaches employ

heuristic methods, like greedy search or simulated annealing,

in an attempt to reduce the search space. Such approaches can

easily get trapped in local optima [17]. The optimization tech-

niques in this paper focus on the constraint-based approaches

which tend to scale better to high-dimensional data.

Constraint-based approaches [10], [11], [28]–[32] perform

structure learning using a series of statistical tests, such as Chi-

square test, G2 test and mutual information test, to learn the

conditional independence relationships among the variables in

the model. The DAG is then built according to these relations

as constraints. Most of the constraint-based algorithms proceed

along similar lines as the work of the PC-stable algorithm [10],

[11]. Unlike score-based approaches, it is generally non-

trivial to perform algorithmic improvements for constraint-

based approaches using general-purpose optimization theory.

This paper mainly focuses on improving the efficiency of the

PC-stable algorithm using parallel techniques.

There are some well-known open-source BN libraries which

contain the implementation of the PC-stable algorithm, such

as bnlearn [14], pcalg [15] and tetrad [16]. Meanwhile, since

the recent parallel computing platforms, such as multi-core

CPUs and GPUs, have emerged to efficiently address various

computational machine learning problems [33], [34], there are

several research works that focus on the acceleration of the

PC-stable algorithm using parallel techniques [18]–[20]. The

key idea is to parallelize the processing of different edges

inside each depth, which is an intuitive idea due to the order-

independent property of the PC-stable algorithm. However,

the edge-level parallelism is load unbalanced, because the

workload of the conditional independence tests for different

edges is highly skewed. This paper improves the efficiency of

the PC-stable algorithm using CI-level parallelism to boost the

applications of the BN structure learning.

III. PRELIMINARIES

In this section, we provide the key terminologies and

definitions related to Bayesian Network structure learning, and

then review the PC-stable algorithm.

A. Bayesian Networks

Bayesian Networks (BNs) are a class of graphical models

that represent a joint distribution P over a set of random

variables V = {V0, V1, ..., Vn−1} via a directed acyclic graph

(DAG). Typically, one variable corresponds to one feature

in the machine learning problems. We use G = (V, E) to

denote the DAG. In a DAG G, each node in V is associated

with one variable and each edge in E represents conditional

dependencies among the two variables. Vj is called a parent

of Vi if there exists a directed edge from Vj to Vi in G, and

we use Pa(Vi) to denote the set of parent variables of Vi.

In a BN, each variable has its local probability distribu-

tionthat describes the probabilities of possible values of this

variable given its possible parent configurations. The joint

probability of variables V in a BN can be decomposed into the

product of the local probability distributions of each variable,

and each local probability distribution depends only on a single

variable Vi and its parents:

P (V0, V1, ..., Vn−1) =

n−1∏
i=0

P (Vi|Pa(Vi))

where n is the number of variables, P (V0, V1, ..., Vn−1) is

the joint probability and P (Vi|Pa(Vi)) is the conditional

probability of variable Vi.

B. Conditional Independence Tests

Consider some random variables Vi, Vj and Vk in a BN, a

CI test assertion of the form I(Vi, Vj |{Vk}) means Vi and Vj

are independent given Vk. Let D = {c0, c1, ..., cm−1} denote
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a data set of m complete samples, a CI test I(Vi, Vj |{Vk}) de-

termines whether the corresponding hypothesis I(Vi, Vj |{Vk})
holds or not, based on statistics of D. For discrete variables,

the most common statistic for testing I(Vi, Vj |{Vk}) is the G2

test statistic [10] defined as

G2 = 2
∑
x,y,z

Nxyzlog
Nxyz

Exyz
,

where Nxyz is the number of samples in D that satisfy Vi = x,

Vj = y and Vk = z. The value of Nxyz can be obtained

from the contingency table that shows the frequencies for

all configurations of values. G2 follows an asymptotic χ2

distribution with (|Vi| − 1)(|Vj | − 1), where | · | denotes the

number of possible values of the variable. The p value of

χ2 distribution can be calculated according to the G2 statistic

and the final decision is made by comparing p value with

the significance level α. If p value is greater than α, the

independent hypothesis I(Vi, Vj |{Vk}) is accepted; otherwise,

the hypothesis is rejected. Exyz is the expected frequency

which is defined as

Exyz =
Nx+zN+yz

N++z
,

where Nx+z =
∑

y Nxyz , N+yz =
∑

x Nxyz , and N++z =∑
xy Nxyz , which represent the marginal frequencies.

C. The PC-Stable Algorithm

The PC-stable algorithm is a constraint-based method for

BN structure learning from data. PC-stable consists of three

steps. The first step is to determine the skeleton of the graph.

The term skeleton means the underlying undirected graph of

the learned network. This step is done by performing a large

number of CI tests. The second step is to identify the v-

structures in the skeleton. A v-structure is a triple (Vi, Vj , Vk)
that can be denoted by Vi → Vk ← Vj . In other words,

nodes Vi and Vj have an outgoing edge to node Vk and

are not connected by any edge in the graph. V-structure is

a key component to distinguish different network structures.

By identifying the v-structures in this step, some edges in

the skeleton become directed edges. The third step is to set

directions for as many of the remaining undirected edges as

possible by applying a set of rules called Meek rules [35]. For

example, we set the direction of the undirected edge Vj − Vk

into Vj → Vk whenever there is a directed edge Vi → Vj such

that Vi and Vk are not adjacent; otherwise a new v-structure

is created. In the three steps of the PC-stable algorithm, the

first step is much more time-consuming [36], taking more

than 90% of the total execution time in many problems. In

Section IV, we elaborate the details of our proposed techniques

to accelerating the first step.

The pseudo-code of the first step of the PC-stable algorithm

is given in Algorithm 1. The general idea is to initialize the

graph G to a complete undirected graph over the node set

V (Line 3), and remove some of the edges by performing

a number of CI tests in consecutive depths (Lines 5 to 20).

Specifically, at each depth d, the algorithm iteratively records

Algorithm 1: The first step of the PC-stable algorithm.

1 Input: Node set V
2 Output: Graph G, SepSet
3 Form the complete undirected graph G over V
4 Let depth d = 0
5 repeat
6 for any node Vi in G do
7 Let a(Vi) = adj(G, Vi)
8 end for
9 for any edge (Vi, Vj) in G do

10 repeat
11 Choose a new S ⊆ a(Vi)\{Vj} with |S| = d
12 Perform CI test I(Vi, Vj |S)
13 if hypothesis I(Vi, Vj |S) holds then
14 Remove (Vi, Vj) from G
15 Store S in SepSet(Vi, Vj)
16 end if
17 until (Vi, Vj) is removed or all S are considered

18 end for
19 Let d = d+ 1
20 until all pairs of (Vi, Vj) in G satisfy |a(Vi)\{Vj}| < d

the current adjacency sets of all the nodes (Lines 6 to 8),

where adj(G, Vi) denotes the adjacent nodes of Vi in G. This

operation is used for choosing the conditioning set S later.

Next, for every edge (Vi, Vj) in the graph G, a number of

CI tests I(Vi, Vj |S) are performed for different conditioning

sets. The elements in the conditioning sets are chosen from

a(Vi)\{Vj}, and the size of each conditioning set |S| is

equal to the current depth d (Lines 9 to 12). If there exists

a conditioning set S where Vi is independent of Vj given

S, the edge (Vi, Vj) is removed from G, and S is stored

in SepSet(Vi, Vj) (Lines 13 to 15). SepSet(Vi, Vj) denotes

the separating set of Vi and Vj , which is used in the second

step of the PC-stable algorithm to identify the v-structures.

Since the second step is fast and is not the focus of our

work, we omit the details of separating set. Once all edges

are considered, d is incremented (Line 19) and the above

procedure is repeated for the next depth. Depth d is used to

control the size of the conditioning sets from small to large.

This process continues until all pairs of adjacent nodes (Vi, Vj)
in G satisfy |a(Vi)\{Vj}| < d as shown in Line 20.

IV. PARALLEL BN STRUCTURE LEARNING

This section elaborates the technical details of our proposed

Fast-BNS. First, we identify two granularities of parallelism,

including edge-level parallelism and sample-level parallelism.

We find some shortcomings of accelerating the PC-stable

algorithm using the above two granularities of parallelism,

including (i) load unbalancing between threads, (ii) many

atomic operations and (iii) high parallel overhead. To remedy

the shortcomings, we propose Fast-BNS which exploits a CI-

level parallelism, where multiple groups of CI tests from

different edges are performed in parallel. Fast-BNS takes
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Fig. 1: Three different granularities of parallelism: edge-level

parallelism, sample-level parallelism and CI-level parallelism.

advantage of a dynamic work pool that contains the edges

required to be processed and their processing progress to

ensure load balancing among threads. The CI-level parallelism

also avoids atomic operations and leads to a reasonable amount

of workloads to amortize the overhead of parallel computing.

To further enhance the efficiency of Fast-BNS, we propose

a series of novel optimizations including (i) grouping the CI

tests to reduce unnecessary CI tests, (ii) employing a cache-

friendly data storage to improve the memory efficiency, and

(iii) generating the conditioning sets of the CI tests on-the-fly

and in parallel to avoid extra memory consumption.

A. Edge-Level and Sample-Level Parallelism

Here, we first describe two schemes using two granularities

of parallelism: edge-level parallelism and sample-level paral-

lelism. Then, we discuss the limitations of these schemes.

Edge-Level Parallelism: The most natural scheme to paral-

lelize the PC-stable algorithm is to parallelize the processing

of different edges inside each depth, which is a coarse-grained

parallelism. In each depth d, it parallelizes the for-loop in

Line 9 of Algorithm 1, dedicating
|Ed|
t edges to each thread,

where t represents the number of threads and |Ed| represents

the number of edges to be processed in the depth d. A simple

example is shown in Figure 1. The current graph contains

four edges, and thus for the case of t = 2, each of the two

threads is responsible for processing two edges. Specifically,

thread 0 is dedicated to edges E0 and E1, while E2 and E3

are assigned to thread 1. This is an intuitive idea because the

order-independent property of PC-stable makes it suitable for

parallelizing at each depth. In other words, an edge deletion

does not effect the processing of other edges at the same depth,

and thus parallelization can be applied.

Sample-Level Parallelism. Another scheme is to parallelize

among samples inside each CI test, which is a fine-grained

parallelism. Since there are a large number of CI tests in

the PC-stable algorithm and they take most of the execution

time, the key reason behind this scheme is to optimize each

of the CI tests. To explain the sample-level parallelism, we

decompose the processing of CI tests into three steps: (i)

generating the contingency table, (ii) computing the marginal

tables, and (iii) computing G2 statistics and determining the

dependency hypothesis. Among them, the most important

step is to generate the contingency table. In this step, the

contingency table is generated by traversing the whole data

set. Specifically, for the CI test I(Vi, Vj |{Vk}), it accesses all

samples in the data set and finds one cell in the contingency

table for each sample by getting the values of Vi, Vj and Vk of

the sample, and finally increments one to this cell. Therefore,

the sample-level parallelism is to parallelize the traversing of

the whole data set, dedicating m
t samples to each thread, where

m represents the number of samples in the data set. For the

example in Figure 1, for the case of t = 2, each thread would

process m
2 samples for every CI test.

Limitations of Edge-Level Parallelism. The coarse-grained

edge-level parallelism is load unbalanced, because the work-

loads of CI tests for different edges is highly different due to

the following reasons.

• Firstly, different nodes in the network may have different

number of adjacent nodes. For example, if node Vi has

two adjacent nodes while Vk has ten adjacent nodes, then

there is
(
2
2

)
= 1 conditioning set when processing edge

Vi − Vj in the depth d = 2, while there are
(
10
2

)
= 45

possible conditioning sets for edge Vk − Vj in the same

depth. We can see from this example that the number

of possible conditioning sets can be quite different. As

shown in Figure 1, edges E0 and E1 assigned to thread

0 have 14 possible CI tests in total, while E2 and E3

assigned to thread 1 have only 6 possible CI tests.

• Secondly, when a hypothesis I(Vi, Vj |S) holds, the edge

between Vi and Vj is removed in advance. Then the CI

tests conditioning on the remaining conditioning sets are

unnecessary. Let us take the edge E3 in Figure 1 as

an example. If V6 and V7 are conditionally independent

given the first conditioning set tested (i.e., S0
3 ), the edge

E3 is removed in advance and the three CI tests of V6

and V7 left are unnecessary to perform, as there is no

edge between V6 and V7 now. Such unnecessary CI tests

are marked in gray in Figure 1. This example shows

that we do not know in advance as to how many CI

tests are required for each edge, since any edge has the

possibility of being removed before finishing its CI tests

conditioning on all its possible conditioning sets.

Limitations of Sample-Level Parallelism: The sample-level

parallelism is fine-grained, but fails to get good speedups due

to the following two main reasons.

• Firstly, since each sample contributes to the generation

of the contingency table, sample-level parallelism may

result in a race condition when updating the cells in

the contingency table. Therefore, we need many atomic

operations to guarantee the correctness of the execution.

However, atomic operations are expensive. An alternative
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way to perform the contingency table generation is to

create a local contingency table for each thread. For a

specific CI test, each thread would then be responsible

for updating its local table according to its own data.

Then the local tables from all threads are combined

to generate the final contingency table. However, this

alternative approach requires much more memory and in-

troduces non-negligible costs of frequent synchronization

and communication among threads.

• Secondly, although generating the contingency table is the

most time-consuming step, it is mainly due to the large

number of such operations, while the workload of each

operation is relatively small. We need a larger amount

of workload for each thread in order to amortize the

overhead of parallel computing (e.g., thread creation).

B. CI-Level Parallelism

To overcome the limitations of the edge-level and sample-

level parallelism, our proposed Fast-BNS employs a CI-level

parallelism, which has a parallelism granularity between edge-

level and sample-level. In each depth, CI tests from different

edges are performed in parallel. To achieve CI-level paral-

lelism, our key idea is to employ a dynamic work pool for each

depth implemented by a stack. The work pool contains the

edges required to be processed and their processing progresses

with respect to the CI tests. Therefore, each time we can fetch

multiple edges required to be processed from the work pool,

find the next groups of CI tests of the edges through their

processing progresses, and execute them in parallel.

In particular, at the beginning of each depth, all the edges

in the current graph G are pushed into the work pool with

zero processing progress. Then, each time t edges are popped

from the work pool and assigned to the threads. Each thread

would then be responsible for processing a group of CI

tests of the assigned edge, where the number of CI tests

is introduced as gs (gs ≥ 1). When the gs CI tests are

finished, Two decisions are made, including whether to accept

the independence hypothesis of the group of CI tests and

whether the edge is required to be pushed into the work

pool. Specifically, the independence hypothesis of the group

is accepted if any one of the CI tests in the group accepts its

independence hypothesis; otherwise, the hypothesis is rejected.

If the independence hypothesis of the group is accepted, or the

edge has finished all its CI tests after processing this group, it

means that the processing of the edge is completed, and thus

the edge does not need to be pushed back to the work pool;

otherwise, the edge would be pushed back to the work pool

with its processing progress recorded as the last processed CI

test. After that, t edges are popped from the work pool, and

the next gs CI tests (according to the processing progress)

of each edge are processed by t parallel threads again. This

process is performed iteratively until the work pool is empty.

Intuitively, one can think of this process as multiple threads

processing multiple CI tests on different edges in parallel, but

a thread is not bounded to a fixed edge. When the processing

of an edge is finished, the thread turns to process the CI tests of

TABLE I: Comparison between edge-level parallelism,

sample-level parallelism and the proposed CI-level parallelism.

Granularity of parallelism
Load

balance
Avoid atomic

operations
Reasonable
workloads

Edge-level parallelism � � �
Sample-level parallelism � � �

CI-level parallelism � � �

other edges immediately without waiting for other edges to be

finished. This is due to the design of dynamic work pool that

monitors the processing progress of each edge. With the edge

monitoring technique, the completed edges are terminated in

time to reduce the unnecessary CI tests. Moreover, we can

better schedule the workloads among threads with the help of

the design of the dynamic work pool. All the threads always

process the CI tests that are required to be processed, and

hence all the threads are active in the parallel region. As shown

in Figure 1, the CI tests in yellow are scheduled to thread 0

and the ones in blue are scheduled to thread 1. The CI tests

of one edge are not necessarily processed by one thread.

Compared with the edge-level parallelism, the proposed CI-

level parallelism has a finer granularity. The workloads of CI

tests can be evenly distributed to each thread with the design

of the dynamic work pool, which solves the issue of load

unbalancing. On the other hand, CI-level parallelism is coarser

than the sample-level parallelism. Since one CI test is not

distributed to multiple threads, each thread holds a complete

contingency table and the race condition does not occur.

Therefore, the CI-level parallelism avoids expensive atomic

operations and also has a reasonable amount of workloads

to amortize the parallel overhead. Table I summarizes the

key differences between edge-level parallelism, sample-level

parallelism and the CI-level parallelism.

The gs in the CI-level parallelism is a trade-off between

the number of CI tests and memory accesses. In the parallel

region, each thread processes gs CI tests of the same edge

Vi − Vj each time and makes the decision according to the

results. Hence, the CI tests in a group share the same form

of I(Vi, Vj |Sn), 0 ≤ n < gs. Since Vi and Vj are common

for the whole group, we propose to reuse them to reduce the

memory accesses when traversing the data set. The reduced

memory accesses increase as the increase of gs. However,

more redundant CI tests are introduced at the same time,

because all the CI tests in a group are required to be performed

before making the final decision on whether the edge is

required to be processed again. In a special case of gs = 1,

no redundant CI tests are introduced. We carefully examine

the effect of gs and observe that some small gs like 6 or 8

are good choices in practice.

It is worth noting that the CI-level parallelism is used

when the depth d ≥ 1. In depth d = 0, the conditioning

set S = ∅ as the size of conditioning sets is equal to d (cf.

Algorithm 1, Line 11). Specifically, for each edge (Vi, Vj) in

G, only one CI test is required, which is I(Vi, Vj |∅) or simply

a marginal independence test I(Vi, Vj). In other words, we

know in advance how many CI tests are required in depth
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zero, which is equal to n(n − 1)/2, representing the number

of edges in the complete undirected graph G over the node

set V , where n represents the number of nodes. Consequently,

the required computations for depth zero can be simplified.

Therefore, the direct edge-level parallelism is applied to depth

zero without the efficiency issue of load unbalancing.

C. Further Enhancing Fast-BNS

We find three issues in existing implementations. First, it is

inefficient to distribute the CI tests of the edges with the same

endpoints to different threads, as it may cause unnecessary CI

tests. Second, the memory access pattern is irregular because

the required values of one CI test are not necessarily stored

sequentially. Third, the number of CI tests is large, which

requires much memory to store the indices of the conditioning

sets for all the CI tests. In this section, we aim to tackle these

three issues to further improve the overall efficiency.

Grouping CI tests of the edges with the same endpoints:
We view the edges with the same endpoints, such as edges

Vi − Vj and Vj − Vi, as the same edge in Fast-BNS, instead

of separating them as in the original PC-stable algorithm,

because it is inefficient to separate the CI tests of two such

edges. For instance, given the edge between Vi and Vj , we

need to perform the CI tests conditioning on the variables

in adj(G, Vi)\{Vj} and adj(G, Vj)\{Vi}. However, if we

first perform the CI tests conditioning on the variables in

adj(G, Vi)\{Vj} and the edge between Vi and Vj is removed,

then the CI tests conditioning on variables in adj(G, Vj)\{Vi}
are unnecessary. Therefore, we solve this dependency by

grouping the CI tests of the edges with the same endpoints

together to reduce the number of CI tests to be performed,

and thus improve the efficiency. If the CI tests between Vi and

Vj accept the independence hypothesis when conditioning on

S ∈ adj(G, Vi)\{Vj}, Fast-BNS does not perform the CI tests

conditioning on the variables in adj(G, Vj)\{Vi}.
Using a cache-friendly data storage: As discussed in Sec-

tion IV-A, a key step of the algorithm is to compute the

contingency table. For example, to test I(X,Y |{Z1, Z2}), we

need to traverse the whole data set and obtain the values of X ,

Y , Z1 and Z2 for all the samples. For a naive two-dimensional

data set storage where each row represents one sample and

each column represents one feature (i.e., one variable in BNs),

we need to traverse all the rows and find four values for each

row. Since X , Y , Z1 and Z2 are not necessarily stored next

to each other, there are many random memory accesses and

hence every memory access can be a cache miss. Therefore, we

instead propose to transpose the data matrix, i.e., using each

row to represent one feature and each column to represent one

sample, which is a cache-friendly data storage for the data. For

the previous example, after the first four memory accesses of

the first column, the upcoming iterations access addresses that

are right next to the previously fetched values in the cache. As

a result, Fast-BNS only has four cache misses at the beginning

and the rest can be served from four cache lines.

Generating conditioning sets on-the-fly: In the PC-stable

algorithm, processing an edge may require many CI tests,

depending on the current depth d and the number of adjacent

nodes of its endpoints. In a naive implementation, we must

generate all the CI tests of an edge before processing the

edge. This approach is inefficient because additional memory

is required to store the indices of the conditioning sets of

all the CI tests. Given an edge Vi − Vj , the selection of its

conditioning sets S = {S0,S1, ...,S(pq)−1} can be viewed as

a combination problem of choosing q elements from p =
|a(Vi)\{Vj}| elements at a time (cf. Algorithm 1, Line 11).

Fast-BNS implements a combination function to generate S in

lexicographical order [37]. Given p, q and r, the combination

function of Fast-BNS is able to directly compute the vector

Sr without computing the whole set S. With the help of the

combination function, all the indices of conditioning sets of

the CI tests can be computed on-the-fly and also in parallel.

Therefore, the work pool of Fast-BNS only contains the edges

to be processed and their processing progress (i.e., r). No

additional memory is required for storing the indices of the

conditioning sets of the edges.

D. Performance Analysis

As we have discussed in Sections IV-A and IV-C, we have

optimizations for Fast-BNS. Here, we analyze the theoretical

speedups provided by these optimizations. The optimizations

to be analyzed include: (i) using CI-level parallelism with the

design of the dynamic work pool; (ii) grouping the CI tests

of the edges with the same endpoints; (iii) using a cache-

friendly data storage. Moreover, we also use the strategy to

generate conditioning sets on-the-fly. However, conditioning

set generation mainly aims to reduce memory consumption,

and hence we omit the speedup it provides in this section.

1) Using CI-level parallelism with the design of the dy-
namic work pool: In the depth d of the graph G, there are

|Ed| edges to be processed. Each edge Ei, with two endpoints

ep1i and ep2i , has a number of CI tests. The number of adjacent

nodes of the two endpoints, denoted by a1i = |adj(G, ep1i )| and

a2i = |adj(G, ep2i )|, as well as the depth d and the results of the

CI tests, determines the number of the CI tests. Specifically,

each edge leads to at most
(
a1
i
d

)
+

(
a2
i
d

)
CI tests, while if

one CI test accepts the independence assumption during the

processing of one edge, the process of the edge is terminated

in advance (i.e., the remaining CI tests become unnecessary).

For the case of t threads running in parallel, the edge-

level parallelism assigns
|Ed|
t edges to each thread. Ideally,

the
|Ed|
t edges assigned to each of the threads have the same

number of CI tests to be processed. However, in practical,

there is load unbalanced issue in most cases. For example,
|Ed|
t out of the |Ed| edges process all the

(
a1
i
d

)
+

(
a2
i
d

)
CI tests

required for each edge Ei, while the other
(t−1)|Ed|

t edges

only process one CI test as they accept the independence

assumption when handling their first CI test. In the worst case,

the
|Ed|
t edges that process all the required CI tests are assigned

to the same thread p. In that case, the performance of the edge-

level parallelism can be severely affected by this unbalanced

workload, since all the threads have to wait for the completion
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of the slowest thread p. In the other words, suppose that the

time for each CI test is TCI , then the required time for the

edge-level parallelism under t threads is

T1 = TCI

|Ed|
t∑

i=1

(

(
a1i
d

)
+

(
a2i
d

)
) (1)

However, the proposed CI-level parallelism evenly distributes

all the CI tests to each thread with the help of the dynamic

work pool, and hence the required time is

T2 =
TCI

t
(

|Ed|
t∑

i=1

(

(
a1i
d

)
+

(
a2i
d

)
) +

(t− 1)|Ed|
t

) (2)

Therefore, the speedup provided by the CI-level parallelism

with the design of the dynamic work pool is

SCI =
T1

T2

2) Grouping CI tests of the edges with the same endpoints:
This optimization provides the speedup by reducing unneces-

sary CI tests. Consider the case of depth d that has |Ed| edges

to be processed, for the edge between Vi and Vj , since edges

Vi−Vj and Vj −Vi are viewed separately in the original PC-

stable algorithm, we need to perform the CI tests considering

two sets, i.e. adj(G, Vi)\{Vj} and adj(G, Vj)\{Vi}. There-

fore, we need to consider 2|Ed| sets in total for the |Ed| edges

in depth d. However, by grouping the CI tests of the edges

Vi − Vj and Vj − Vi, if the CI tests accept the independence

hypothesis when considering the set adj(G, Vi)\{Vj}, Fast-

BNS does not consider the set adj(G, Vj)\{Vi}. Suppose ρd
is the ratio of edge deletion for depth d. Then this optimization

reduces the CI tests by ρd|Ed| unnecessary sets. That is, only

2|Ed| − ρd|Ed| sets need to be considered. Therefore, if we

ignore the difference in the number of CI tests for different

sets, the speedup brought by grouping CI tests is

Sgrouping =
2|Ed|

2|Ed| − ρd|Ed| =
2

2− ρd

3) Using a cache-friendly data storage: This optimization

provides the speedup by reducing the ratio of cache misses.

The memory accesses of PC-stable mainly come from the

accesses to the data set when computing the contingency table.

For the CI test I(X,Y |{Z1, ..., Zd}) in depth d, we need to

access the values of X , Y , Z1, ..., Zd of the m samples in

the data set, where each of the values is 4 bytes in memory.

Suppose that the cache line size is B bytes. Firstly we consider

the access to the B
4 samples. Regarding the cache-unfriendly

data storage, since X , Y , Z1, ..., Zd are not necessarily stored

next to each other, every memory access can be a cache miss.

Therefore, the required time of accessing the values of B
4

samples for the cache-unfriendly data storage is

T3 = TDRAM (d+ 2)
B

4

where TDRAM represents the access time of main memory

(caused by the cache misses). However, for the cache-friendly

data storage, it only has (d+2) cache misses for the access of

the first sample, and the rest accesses of the (B4 − 1) samples

can be served from the (d+ 2) cache lines since they access

addresses that are next to the previously fetched values in the

cache. Therefore, the required time of accessing the values of
B
4 samples for the cache-friendly data storage is

T4 = TDRAM (d+ 2) + Tcache(d+ 2)(
B

4
− 1)

where Tcache is the cache access time. Since m is often much

greater than B, the access time to the whole data set is a

multiple of the access time to the B
4 samples. Therefore, the

speedup provided by the cache-friendly data storage is

Scache =
T3

T4

4) Overall speedup: To conclude, the performance im-

provement of Fast-BNS can be computed as

S = SCI · Sgrouping · Scache

For example, let us consider the case where the number of

threads t = 4 and the depth d = 2. Suppose that there are

|Ed| = 1200 edges at the beginning of depth 2 and 480 edges

at the end, and hence the edge deletion ratio ρd = 0.6. Suppose

each edge has the same number of adjacent nodes, which is the

mean degree of the graph, and we assume that the mean degree

is 10. Hence, every a1i and a2i in Equations (1) and (2) can be

replaced by the mean degree 10. Moreover, the cache line size

B is often 64 bytes. The cache access time Tcache is typically

less than the access time of main memory TDRAM by a factor

of 5 to 10, and we assume TDRAM

Tcache
= 8. Therefore, we can

calculate the ideal speedup provided by Fast-BNS under these

circumstances: SCI = 3.87, Sgrouping = 1.43, Scache = 5.57,

and hence the speedup S = 30.8. However, this theoretical

analysis only provides a general speedup of Fast-BNS, the

situation in the experiments is often more complicated than

the ideal case. For example, the values of |Ed|, ρd, a1i and a2i
all depend on the specific problem to be solved, and they are

usually unknown beforehand.

V. EXPERIMENTAL EVALUATION

In this section, we conducted experiments on to evaluate

the performance of our proposed techniques and compared

the results to existing methods.

A. Experimental Setup

We implemented Fast-BNS using OpenMP in C++ for

Bayesian Network structure learning and compared its per-

formance to the existing methods. Specifically, we compared

Fast-BNS with sequential implementations of the PC-stable

algorithm in three different open-source packages including

bnlearn [14], pcalg [15] and tetrad [16]. We also compared

Fast-BNS with the recent multi-threaded implementations in

bnlearn [18] and parallel-PC [20]. Bnlearn, pcalg and parallel-

PC are all R packages, while tetrad is implemented in Java.

There are other parallel work for PC-stable, such as the

work [19]. However, the algorithm in [19] is not open-source,
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TABLE II: BNs from which data sets used are generated.

Data set # of nodes # of edges max # of samples

Alarm [38] 37 46 15000
Insurance [39] 27 52 15000
Hepar2 [40] 70 123 15000
Munin1 [41] 186 273 15000
Diabetes [42] 413 602 5000
Link [43] 724 1125 5000
Munin2 [41] 1003 1244 5000
Munin3 [41] 1041 1306 5000

and its experimental results show that its parallel implementa-

tion achieves lower speedup over its sequential implementation

compared with the speedup of the parallel implementation of

Fast-BNS over its sequential counterpart. Therefore, we did

not compare Fast-BNS with [19]. All the experiments were

conducted on a Linux machine with two 26-core 2GHz Intel

Xeon Platinum 8167M CPUs and 768GB main memory.

Data sets used in our experiments were obtained from

eight benchmark BNs of different sizes listed in Table II,

where the last four data sets are large-scale BNs. These

networks represent problems from different fields and have

been widely used for comparative purposes in the literature

of BN structure learning. We obtained 5,000 samples of data

with no missing values from each of the networks. Besides,

more data sets are obtained for the first four networks with

10,000 and 15,000 samples to test the impact of different

sample sizes. We used G2 test statistic to perform the CI tests

while setting the significance level α to 0.05 in all experiments.

The accuracy of Fast-BNS is exactly the same as the other

PC-stable algorithm implementations, because Fast-BNS is an

accelerated implementation of the same PC-stable algorithm.

Hence, we omit reporting the results on accuracy comparison.

B. Overall Comparison

In the overall evaluation of Fast-BNS, we compared the

execution time of both sequential and parallel implementations

of Fast-BNS with the existing implementations on the eight

data sets with 5000 samples. Specifically, we compared the

sequential version of Fast-BNS (i.e., Fast-BNS-seq) with the

PC-stable implementations in bnlearn (i.e., bnlearn-seq) [14],

pcalg [15] and tetrad [16] packages; we also compared the par-

allel version of Fast-BNS (i.e., Fast-BNS-par) with the multi-

threaded implementation in bnlearn (i.e., bnlearn-par) [18]

and and parallel-PC [20]. The gs of Fast-BNS was set to

1 for all the experiments here. For comparing the parallel

implementations, we varied the number of OpenMP threads

t from 1 to 32 and chose the one with the shortest execution

time. We terminated the experiment if the execution time

exceeded 48 hours with no results obtained.

The experimental results are summarized in Table III. As

can be seen from the “Speedup” columns of the table, the

sequential implementation of our proposed Fast-BNS often

achieves two to three orders of magnitude speedup over tetrad

and pcalg, and can be 1.4 to 7.2 times faster than the sequential

version of bnlearn. The speedups of Fast-BNS are mainly due

to the careful optimizations, including of grouping CI tests

of the edges with the same endpoints, using a cache-friendly

data storage and generating conditioning sets on-the-fly, as we

discussed in Section IV-C. These general optimizations can

be applied to both sequential and parallel implementations.

When comparing the parallel implementations, Fast-BNS-par

is often much faster than parallel-PC, and can run 4.8 to 24.5

times faster than bnlearn-par. It is worth noting that for some

small data sets, such as Alarm and Insurance, bnlearn failed

to get improvements by the multi-threaded techniques, and

thus the same results were reported for its sequential and

parallel implementations. Another observation is that Fast-

BNS always achieves its shortest execution time when t = 32.

Moreover, the execution time of the sequential version of Fast-

BNS can be reduced by more than 85% by using the parallel

computing techniques. The experiment on the Link data set is

the task taking the longest time to complete. This task ran more

than 2 days using the existing sequential implementations

bnlearn, tetrad, pcalg and the parallel implementation parallel-

PC, while the execution time is significantly reduced to about

1.2 hours using the proposed Fast-BNS.

To further investigate why Fast-BNS is faster, we used perf

Linux profiler to obtain the detailed measurements for Fast-

BNS-par, Fast-BNS-seq and bnlearn-par. The results on Hep-
ars and Munin1 are shown in Table IV. We can observe that

the parallel version of Fast-BNS increases CPU utilization and

FLOPS. Moreover, compared with bnlearn, both the sequential

and parallel implementations of Fast-BNS have fewer accesses

to the L1 cache and last level (LL) cache, and significantly

decreases the rate of cache misses.

C. Studies on Different Granularities

Compared with the schemes of the edge-level and sample-

level parallelism, the CI-level parallelism employed in Fast-

BNS solves the efficiency issues of load unbalancing, atomic

operations and large parallel overhead (cf. Sections IV-A

and IV-B). To investigate the performance of different par-

allelism granularities, we implemented another two parallel

versions using the schemes of edge-level and sample-level

parallelism, and compared it with Fast-BNS that employs the

CI-level parallelism. All these parallel versions are based on

the optimized sequential version of Fast-BNS.

Figure 2 illustrates the execution time of the three schemes

using different granularities of parallelism with different num-

ber of threads. We observe that the CI-level parallelism always

leads to the shortest execution time under different number

of threads, indicating the effectiveness of the optimizations

used in the CI-level parallelism. Overall, the sample-level

parallelism is the worst due to the efficiency issues of many ex-

pensive atomic operations and large parallelization overhead.

Moreover, the execution time of the edge-level parallelism can

be reduced by more than 20% using the CI-level parallelism

which solves its load unbalancing issue. Learning larger-scale

BNs may encounter more issues of load unbalancing, and

Fast-BNS can take more advantage of the load balancing

optimization in the CI-level parallelism. On Diabetes and Link,

the improvement is over 3 times.
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TABLE III: Execution time comparison of Fast-BNS with other implementations under both sequential and parallel setting.

Speedup of Fast-BNS over each compared method is also reported.

Data set
Sequential implementation Parallel implementation

Execution time (sec) Speedup Execution time (sec) Speedup
bnlearn tetrad pcalg Fast-BNS bnlearn tetrad pcalg bnlearn parallel-PC Fast-BNS bnlearn parallel-PC

Alarm 0.42 5.38 53.8 0.12 3.5 45.1 450 0.42 15.4 0.017 24.5 890
Insurance 0.34 13.08 71.9 0.24 1.4 55 302 0.34 25.4 0.037 9.2 687
Hepar2 4.03 37.7 208.9 1.57 2.8 24 133 2.82 158 0.19 15.2 852
Munin1 111 770 2160 15.5 7.2 49.8 140 16.5 162 1.78 9.3 91.3
Diabetes 113k > 2 days 23.3k 4.9 > 7.4 7640 54k 1203 6.4 44.9
Link > 2 days 62.9k > 2.7 49.4k > 2 days 4349 11.4 > 39.7
Munin2 27.9k > 2 days 3496 8.0 > 49.4 2734 > 2 days 293 9.3 > 590
Munin3 38.7k > 2 days 8081 4.8 > 21.4 3621 > 2 days 751 4.8 > 230

TABLE IV: Detailed comparison of the parallel and sequential versions of Fast-BNS with the parallel version of bnlearn.

“-seq” and “-par” represent sequential and parallel implementation, respectively.

Hepar2 L1-cache accesses L1-cache misses (rate) LL-cache accesses LL-cache misses (rate) FLOPS CPU utilization

Fast-BNS-par 4.5× 109 7.9× 107 (1.78%) 1.6× 106 8.1× 104 (5.1%) 1.4× 109 12.7
Fast-BNS-seq 4.1× 109 7.2× 107 (1.73%) 2.5× 105 1.5× 104 (6.0%) 2.3× 108 1
bnlearn-par 1.5× 1010 4.7× 108 (3.17%) 4.2× 107 1.7× 107 (39.9%) 7.0× 107 3.7

Munin1 L1-cache accesses L1-cache misses (rate) LL-cache accesses LL-cache misses (rate) FLOPS CPU utilization

Fast-BNS-par 3.8× 1010 8.7× 108 (2.28%) 8.9× 106 1.8× 105 (2.03%) 2.3× 109 13.2
Fast-BNS-seq 3.8× 1010 8.8× 108 (2.28%) 8.6× 106 9.3× 104 (1.08%) 2.7× 108 1
bnlearn-par 1.0× 1011 3.0× 109 (2.92%) 1.7× 108 8.2× 107 (47.1%) 2.4× 108 8.7

(a) Alarm (b) Insurance

(c) Hepar2 (d) Munin1

(e) Diabetes (f) Link

Fig. 2: Execution time of parallel implementations using three

different granularities of parallelism: CI-level parallelism,

edge-level parallelism and sample-level parallelism.

D. Sensitivity Studies

To better understand Fast-BNS, we performed sensitivity

studies on three key parameters: sample size, group size and

network size. A series of experiments were carried out by

changing the sample size and group size. Experiments were

also conducted on data sets with different network sizes.

Varying sample size: We conducted experiments on Alarm,

Insurance, Hepar2 and Munin1 networks to investigate the

scalability of the proposed Fast-BNS to the sample size. We

used different data sets of 5,000, 10,000 and 15,000 samples,

and compared the execution time for the different sample sizes.

Figure 3 shows the speedups of the parallel implementation

of Fast-BNS over the sequential implementation of Fast-

BNS under different sample sizes. We can observe a smooth

improvement in speedups for all the sample sizes, indicating

good scalability of the proposed techniques to the sample

size. A large sample size often gets a slightly higher speedup

because in this case, each CI test has a larger amount of

workload which can better amortize the parallel overhead.

Varying group size: We examined the effect of gs of Fast-

BNS on the number of CI tests and execution time. We

tested on Alarm, Insurance, Hepar2 and Munin1 networks

with 10,000 samples, which are also used in the previous

experiments. The results are shown in Figure 4. The bars in the

figure illustrate the execution time under different group sizes

for the four problems, and the lines illustrate the proportion

of the CI tests increased by the group size compared to the

case of gs = 1. We can observe that the number of CI tests

increases with the increase in group size. Therefore, although

a larger group size can reduce more memory accesses, the

final execution time may increase for the larger group sizes.

The gs is a trade-off between the number of CI tests and

memory accesses. Our observation is that the proportion of
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(a) Alarm (b) Insurance

(c) Hepar2 (d) Munin1

Fig. 3: Studies on speedup of Fast-BNS-par over Fast-BNS-

seq under different sample sizes.

the increased CI tests is not too high (e.g., less than 10%)

when the group size is no more than 8, while the number of

CI tests often increases more rapidly when the group size is

greater than 8. For example, the proportion of the increased

CI tests is about 5% for Munin1 when gs = 8, while the

proportion increases to about 20% when gs = 10. As a result,

the shortest execution time is often achieved when gs ≤ 8
and it depends on the specific problem. The downward arrows

in Figure 4 mark the gs that achieves the shortest execution

time. We can observe that Alarm and Insurance achieve the

shortest execution time when gs = 6, and Hepar2 and Munin1
achieve the shortest execution time when gs = 8. Note that

the experimental results of Fast-BNS in Section V-B are with

gs = 1, and thus the execution time can be further reduced

by about 10% with careful parameter tuning.

Different network sizes: Figure 5 shows the speedups of

the parallel implementation of Fast-BNS over its sequential

implementation on the data sets with 5000 samples. The six

BNs tested in the experiments are of different network sizes

as shown in Table II. We can observe that Fast-BNS can

achieve high speedups for large-scale networks, indicating

good scalability of the proposed techniques to large networks.

For example, Fast-BNS achieves 19.3 times speedup on the

Diabetes network, which contains 413 nodes and 602 edges.

For small-scale networks, the speedups of parallel implemen-

tation is relatively smaller, because they already require short

execution time for structure learning (e.g., less than 1 second

for Alarm and Insurance) and the parallelization overhead of

these small-scale networks accounts for a large proportion.

Therefore, with the help of the proposed general optimizations

discussed in Section IV-C, our sequential implementation is

sufficient for such small-scale networks with a relatively small

number of nodes and edges.

(a) Alarm (b) Insurance

(c) Hepar2 (d) Munin1

Fig. 4: Effect of group sizes on execution times and the number

of increased CI tests.

Fig. 5: Studies on speedup of Fast-BNS-par over Fast-BNS-

seq under different network sizes.

VI. CONCLUSION

In this paper, we have proposed a parallel PC-stable algo-

rithm namely Fast-BNS for learning Bayesian Network (BN)

structure. The challenges of developing a fast solution for BN

structure learning include addressing load unbalancing issues,

reducing atomic operations and amortizing parallel overhead.

To tackle these challenges, Fast-BNS exploits the CI-level

parallelism, which avoids the expensive atomic operations and

has suitable amount of workloads to amortize the parallel

overhead. A dynamic work pool is designed to monitor the

processing progress of edges and to schedule the workloads

of threads, so as to balance the workload among threads.

Fast-BNS also leverages a series of techniques to reduce

the unnecessary CI tests and improve the memory efficiency.

We have conducted extensive experiments to test the effec-

tiveness of Fast-BNS. Experimental results have shown that

the sequential version of Fast-BNS is up to 50 times faster

than the existing solutions. When compared with the parallel

counterpart, the parallel version of Fast-BNS is 9.2 to 24.5

times faster. Furthermore, Fast-BNS has demonstrated good

scalability to network size and sample size.
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