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* Bayesian Networks (BNs) are probabilistic graphical models.

* A BN is defined by:
° 3 (a DAG G)
* 3

»can be factorized into local Conditional Probability Distributions (CPDs) of
each node in G.
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* BNs are suitable for representing knowledge with uncertainty.
* BNs have been applied in a wide range of applications.
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Biological network . Social network
, Forecasting
reconstruction models

Medical diagnosis
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* Structure learning: learn DAGs that are well matched the observed data

* Constraint-based approaches:
* Test independencies, build based on independencies

W

» By conditional independence (Cl) tests

eg. I(I,G|{D})
Basic theory: no Ss.t. I(I,G |S) =>1—G

* Most are based on the algorithm
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- Step 1
»
> 90% of the total time

Start from a complete
undirected graph

Remove edges
based on CI tests

)Depth d=0
v I(D,S|{})
v I(D,T|{D)

x I, G |1})

==>

X ..

complete undirected graph
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Q skeleton

Depthd =1
v IS, LI{G})
v I(D,L [{G})

vILLISY) T

x 1(G,S |{L})

X ..

Depth d =2
v I(G,S|{I,L}) _
x 1(G,T[{S,L})

" (o) (&

structure
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* Key barrier: a large number of Cl tests

* Sequential implementations:
* bnlearn [scutari, 2009]
* pcalg [Kalisch et al, 2012]
e tetrad [Ramsey et al, 2018]

* Parallel implementations:
* bnlearn [scutari, 2014]
* Parallel-PC [Le et al, 2016]
* BIB-based method [Madsen et al, 2017]
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* Coarse-grained scheme: edge-level parallelism
* Parallelize the processing of edges inside each depth
load unbalancing
» Different number of adjacent nodes
* Undetermined number of Cl tests
* Fine-grained scheme: sample-level parallelism

* Parallelize among samples inside each Cl test
* i.e. parallelize traversing of the whole data set

* Expensive atomic operations
* High parallel overhead
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Overview of Fast-BNS

1. Cl-level parallelism:
* between edge-level and sample-level
* Parallelize Cl tests of different edges, implemented using a dynamic work pool
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Edge-level tO e.g. depth = 2, five edges, two threads: Edge-level t1
" p-¢  I-6 c-L N G6-s 1'—'5"‘\'
"1, 6 1{, SN |x WG D, SH|* [IG.LID,ID|* 16, SI{LLY |V !
L I(D,G |{I,L}Y) |* |I(,G|{D,L}Y)|* |I(G,LI|{D,S}) i1 1(G, S |{1,D}) | :
(ID,6 1S, L) | * @GS, LY |* [1G, LI SY |*1[1(G,S [{L, D} !
Ay A N o e e e e e e e e e e
. /Sample 0 Sample m-1 Cl-level tO
2. Further |mprovements: sample-level t0 I. m .l sample-level t1
0~m/2-1 m/2 ~ m-1 Cl-level t1

* Grouping Cl tests

e Using a cache-friendly data storage
* Generating conditioning sets on-the-fly

10
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* Key idea: a
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, contains:
1. The edges required to be processed

2. The edges’ processing progresses with respect to the Cl tests

Work pool

or less

@
gs Cltests | ©

t0

Push back!

t1

Not push back!

Intuition:

Multiple threads processing multiple
Cl tests on different edges in parallel,
but a thread is never bounded to a
fixed edge.

11
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e.g. depth = 2, five edges, two threads: Edge-level t1
" p-6¢  I-G 6-L M _6-s I-s
{L,SH|x [I(I,G|{D,S})|* |I(G,LI|{D,I1}) ><:: I1(G,S|{I,LD) |V l
{I,LY) [x |I(,G|{D,L})* |I(G,L|{D,S}) i1 1(G, S |{I, D}) | x :
S.L)|x UGS LY |* [IGLIHLSY |*)[1G,S [{L, DY) |
N e e e e e e e e e e e e oo _
/SampIeO Sample m-1 Cl-level tO

Sample-level t0 I. ” . Sample-level t1

0~m/2-1 m/2 ~ m-1 Cl-level t1

TABLE I: Comparison between edge-level parallelism,
sample-level parallelism and the proposed Cl-level parallelism.

Summary:

* Cl-level parallelism relieves the Gramularity of parallolism | 0% | Avoid aiomic | Reasonable
efficiency issues in edge-level and | balance | operations | workloads
: Edge-level parallelism X v v
sample-level parallelism. Sample-level parallelism v X X
Cl-level parallelism v v v

12
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v'Grouping Cl tests of the edges with the same endpoints
e e.g.view edges D — L and L — D as the same edge
* To reduce unnecessary Cl tests

v'Using a cache-friendly data storage
* To reduce cache misses

v'Generating conditioning sets on-the-fly
* Generate set given any d and processing progress
* To reduce memory consumption

13
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* Two 26-core 2GHz Intel Xeon Platinum 8167M CPUs and 768GB main memory

* Implemented using OpenMP in C++

* Baselines:
* Sequential: bnlearn-seq [Scutari, 2009], pcalg [Kalisch et al, 2012] , tetrad [Ramsey et al, 2018]
* Parallel: bnlearn-par [Scutari, 20141, parallel-PC [Le et al, 2016]

* Datasets:
* Alarm, Insurance, Hepar2, Muninl1, Diabetes, Link, Munin2, Munin3
e # nodes from 37 to 1041; # edges from 46 to 1306

15
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* Overall comparison of execution time and speedup

TABLE II: Execution time and speedup.

Sequential implementation Parallel implementation

Data set Time (sec) Speedup Time (sec) Speedup
Fast-BNS | bnlearn | tetrad | pcalg Fast-BNS | bnlearn | parallel-PC

Alarm 0.12 3.5 45.1 450 0.017 24.5 890
Insurance 0.24 1.4 55 302 0.037 9.2 687
Hepar2 1.57 2.8 24 133 0.19 15.2 852
Muninl 15.5 7.2 49.8 140 1.78 9.3 91.3
Diabetes 23.3k 4.9 > 7.4 1203 6.4 449
Link 62.9k > 2.7 4349 11.4 > 39.7
Munin2 3496 8.0 > 494 293 9.3 > 590
Munin3 8081 4.8 > 21.4 751 4.8 > 230

Sequential: 1.4 - 8 times faster than bnlearn-seq

Parallel: 4.8 — 24.5 times faster than bnlearn-par
16
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Overall Comparison

e Detailed measurement
e Use perf Linux profiler

TABLE IV: Detailed comparison.

THE UNIVERSITY OF
%Y WESTERN
%? AUSTRALIA

Hepar2 L1-cache accesses | L1-cache misses (rate) | LL-cache accesses | LL-cache misses (rate) FLOPS CPU utilization
Fast-BNS-par 4.5 x 10° 7.9 x 107 (1.78%) 1.6 x 10° 8.1 x 10* (5.1%) 1.4 x 107 12.7
Fast-BNS-seq 4.1 x 10° 7.2 x 107 (1.73%) 2.5 x 10° 1.5 x 10% (6.0%) 2.3 x 108 1
bnlearn-par 1.5 x 1010 4.7 x 10% (3.17%) 4.2 x 107 1.7 x 107 (39.9%) 7.0 x 107 3.7

Advantage: increase CPU utilization and FLOPs, decrease

L1 cache, LL cache accesses and rate of cache misses.

17
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* Comparison of different granularities:
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soom i \\/
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£ $ 50000 -
K ) «B.Cl-level
é iy ~&-.Cl-level § 40000 4
= = Edge-level
.S Edge-level § 30000 -
‘é 0.8 -1 S
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w04 4 i
' 10000 -
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1 2 4 8 16 32 1 2 < 8 16 32
Number of threads Number of threads
(c) Hepar2 (f) Link

Cl level parallelism always leads to the shortest
execution time under different number of threads.
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Sample size: 1000

 Varying sample size 1 Sample size: 1000

S 84 —.—sample size: 15000 § 81 —+Somple size: 15000
4 - 4 1
5 . 2
0 T T T T T . ' ! ! ' !
! 2 4 8 16 32 ' ’ Num:er of thsreads ° *
« Different network sizes umper s g
(b) Insurance (d) Muninl
25
20 -
g15 1 14.5
§10 - Good scalability of Fast-BNS to sample
> I I size and network size
0

Alarm Insurance Hepar2 Muninl Diabetes Link
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L Sensitivity Studies

* Varying group size
* Group size (gs): trade-off between the number of Cl tests and memory accesses
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6 or 8 is good choice in our experiments. 20
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* We proposed Fast-BNS for efficient BN structure learning which exploits
the Cl-level parallelism and employs a series of novel techniques.

* Fast-BNS tackles the challenges of addressing load unbalancing issues,
reducing atomic operations and amortizing parallel overhead.

* Experimental results show that Fast-BNS-seq is 1.4 - 8 times faster and
Fast-BNS-par is 4.8 - 24.5 times faster. Moreover, it has good scalability to
the network size and sample size.
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