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Abstract

Despite the rapid advancements of large lan-
guage models (LLMs), LLM serving systems
remain memory-intensive and costly. The key-
value (KV) cache, which stores KV tensors
during autoregressive decoding, is crucial for
enabling low-latency, high-throughput LLM
inference serving. In this survey, we focus
on system-aware KV infrastructure for serving
LLMs (abbreviated as sKis). We revisit recent
work from a system behavior perspective, orga-
nizing existing efforts into three dimensions:
execution and scheduling (temporal), place-
ment and migration (spatial), and representa-
tion and retention (structural). Furthermore, we
analyze synergies across behaviors and their
links to optimization objectives, highlighting
future opportunities. Our work systematizes a
rapidly evolving area, providing a foundation
for understanding and innovating KV cache
designs in modern LLM serving infrastructure.

1 Introduction

Large language models (LLMs) have showcased ex-
ceptional abilities across diverse applications (Zhao
et al., 2023), with notable examples like GPT (Rad-
ford et al., 2018, 2019; Brown et al., 2020; Ope-
nAI, 2023), LLaMA (Touvron et al., 2023a,b), and
OPT (Zhang et al., 2022). These models excel
at large-scale high-quality language understanding
and generation, powered by the Transformer archi-
tecture (Vaswani et al., 2017), which efficiently cap-
tures long-range dependencies via self-attention.

Despite their success, serving LLMs efficiently
remains non-trivial (Li et al., 2024a). Transformer-
based LLMs generate tokens autoregressively, with
each token conditioned on all previous ones. To
avoid redundant compute, serving systems adopt a
key-value (KV) cache (Pope et al., 2023) to store
intermediate KV tensors of the generated tokens.
Yet, as prompt and output length grow, the KV
cache can reach 1–2 million tokens (Pichai and
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Figure 1: Positioning of the survey scope (“sKis”).

Hassabis, 2024; Ding et al., 2024), creating mem-
ory bottlenecks and highlighting the critical role
of KV cache optimization. Consequently, a grow-
ing body of KV-centric techniques has emerged,
yielding memory savings and efficiency gains in
throughput and latency (Li et al., 2024b).

To this end, we argue that it deserves a deep
investigation of system-aware, serving-time, KV-
centric optimization methods, as shown in Fig. 1,
which we call this scope sKis. We adopt a system-
oriented taxonomy to offer a comprehensive under-
standing of sKis, categorizing methods along three
fundamental axes of system behaviors, as shown in
Fig. 2: (i) execution and scheduling focuses on
the temporal control of when KV data is accessed,
computed, or scheduled (cf. § 3); (ii) placement
and migration captures the spatial decisions of
where KV data is placed in the memory hierarchy
or migrated across devices (cf. § 4); and (iii) rep-
resentation and retention concerns the structural
treatment of how KV data is compressed or man-
aged (cf. § 5). We further analyze cross-behavior
synergies and behavior–objective effects to reveal
overlooked regions and open challenges (cf. § 6).

Prior surveys span efficient LLM inference and
serving (Zhou et al., 2024b; Yuan et al., 2024; Miao
et al., 2023; Li et al., 2024a; Wang et al., 2024a),
with KV cache discussed only as a minor compo-
nent. Another line specifically reviews KV cache
methods, organizing them by lifecycle stages (Shi
et al., 2024) or by abstraction level (Li et al., 2024b).
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Instead, this survey focuses exclusively on sKis and
distinguishes itself by offering a system-oriented
perspective and a deeper understanding. Compar-
isons with related surveys are in App. B. To the
best of our knowledge, we are the first to frame KV
cache optimization as a temporal-spatial-structural
behavior space, which enables comparable synthe-
sis and actionable guidance for this area. We hope
our work informs future research in LLM accelera-
tion, especially that centered on KV cache design.

2 Foundations and Taxonomy

Transformer-based LLMs. LLMs are built from
stacked Transformer blocks, each with multi-head
self-attention (MHSA) and feed-forward network
(FFN). These blocks are sequential, where the out-
put of one block serves as the input to the next. For
the i-th attention head, MHSA applies learned pro-
jections WQi , WKi , and W Vi to the input features
X to get queriesQi = XWQi , keysKi = XWKi ,
and values Vi = XW Vi . The self-attention oper-
ation then generates the head output Zi, and the
outputs from all heads are concatenated and pro-
jected by WO to form the final attention output:

Zi=softmax(
QiK

>
i√

dk
)Vi, Z=concat(Z1,...,Zh)W

O.

Following this, the output of MHSA is fed into
the FFN module, which applies two linear transfor-
mations with a nonlinear activation (e.g., ReLU):

FFN(x) = ReLU(xW1 + b1)W2 + b2,

where W1, W2, b1, and b2 are learnable parame-
ters. These modules together enable contextualized
autoregressive modeling in LLMs.
LLM Inference and KV Cache. LLMs generate
tokens in an autoregressive manner, as shown in
Fig. 3. In each generation step, the model takes
as input the input tokens and previously generated
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Figure 3: Prefill and decode phases of LLM inference.

tokens, and generates the next token. This process
is divided into two phases: the prefill phase starts
with the initial input tokens and generates the first
output token, while the decode phase generates new
tokens autoregressively. Due to the quadratic time
complexity of self-attention, repeatedly computing
attention across tokens is computationally expen-
sive. To address this, key-value (KV) cache is used
to store the previously computed intermediate KV
tensors, as shown in Fig. 3. At each new step, the
model efficiently reuses these cached tensors with-
out recomputing attention over the entire sequence.
Scope and Taxonomy. This survey investigates
recent advances in the sKis scope shown in Fig. 1.

sKis denotes system-aware KV infrastructure
for serving LLMs. A method belongs to sKis if
it: (i) operates during serving (inference), (ii)
centers on KV caches as the primary optimiza-
tion target, and (iii) aims to improve system met-
rics without retraining the base LLM’s weights
or modifying its Transformer architecture.

This survey organizes literature on sKis via a sys-
tem view, as shown in Fig. 2. Unlike task- or stage-
based classifications, our taxonomy is grounded in
low-level system behaviors, and we offer further de-
tails in App. A. However, similar to how a modern
OS includes components for scheduling, memory,
and I/O, LLM serving systems often involve tech-
niques spanning various aspects. Thus, a single pa-
per may naturally touch on several categories. For
clarity and focus, we highlight one or two primary
categories per work based on its main contributions.
Minor associations are not elaborated, and we refer
to App. C for details. We summarize the methods
in Fig. 4 and the key findings in App. D.

3 KV Execution and Scheduling

This section captures the temporal behaviors of
KV cache usage, including how cache entries are
scheduled and executed efficiently at runtime.

3.1 KV-centric Scheduling
While scheduling is a long-studied system prob-
lem, KV-centric scheduling (KVS) methods explic-
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cake (Qin et al., 2024), DistServe (Zhong et al., 2024), MuxServe (Duan et al., 2024), DéjàVu
(Strati et al., 2024)

Compute offload-
ing (§ 3.3.2)

CComp (Park et al., 2023; Park and Egger, 2024), FastDecode (He and Zhai, 2024), AttAcc (Park
et al., 2024), InstInfer (Pan et al., 2024), TwinPilots (Yu et al., 2024a), PAPI (He et al., 2025),
MagicPIG (Chen et al., 2025b), Neo (Jiang et al., 2025b)
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Intra-GPU memory hierarchy AsyncKV (Dong et al., 2025), PRESERVE (Yüzügüler et al., 2025)
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(Yang et al., 2024b), QAQ (Dong et al., 2024b), Atom (Zhao et al., 2024b), KIVI (Liu et al., 2024f),
CacheGen (Liu et al., 2024e), DecoQuant (Liu et al., 2024d), GEAR (Kang et al., 2024), SKVQ (Duanmu
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HeadKV (Yu et al., 2024b), LESS (Dong et al., 2024a), LoRC (Zhang et al., 2024a), Palu (Chang et al.,
2025b), xKV (Chang et al., 2025a), ShadowKV (Sun et al., 2024), MatryoshkaKV (Lin et al., 2025a),
ReCalKV (Yan et al., 2025), FDC (Zhang and Shen, 2025)
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Sparsification CHAI (Agarwal et al., 2024), ThinK (Xu et al., 2025b), ClusterAttn (Zhang et al., 2025b)

Merging SubGen (Zandieh et al., 2024), D2O (Wan et al., 2024), KVMerger (Wang et al., 2024b),
CaM (Zhang et al., 2024c), KVSharer (Yang et al., 2024c), MiniCache (Liu et al., 2024a)
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vLLM (Kwon et al., 2023), PromptCache (Gim et al., 2024), LazyLLM (Fu et al., 2024), vTensor (Xu
et al., 2024a), ChunkAttention (Ye et al., 2024), FastSwitch (Shen et al., 2024), RadixAttention (Zheng
et al., 2024), MemServe (Hu et al., 2024a), vAttention (Prabhu et al., 2025), LeanKV (Zhang et al.,
2025c), FlashInfer (Ye et al., 2025)
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et al., 2024), SnapKV (Li et al., 2024c), DynamicKV (Zhou et al., 2024a), LeanKV (Zhang et al., 2025c),
CAKE (Qin et al., 2025), SepLLM (Chen et al., 2025a), LaCache (Shi et al., 2025)

Figure 4: Taxonomy of sKis and associated methods. Each method is annotated with its primary contributions for
conciseness. Minor category associations are omitted here and listed in Appx. C, Tab. 5.

itly integrate KV characteristics into runtime deci-
sions. At the request level, some methods adopt
KV usage-aware scheduling to balance resource
load and reduce contention (Hu et al., 2024b; Duan
et al., 2024; Xiong et al., 2024; Shahout et al., 2024;
Wu et al., 2024a). For example, TetriInfer (Hu
et al., 2024b) prioritizes requests using predicted
KV usage to mitigate prefill-decode interference,
while LoongServe (Wu et al., 2024a) integrates re-
quest dispatching, KV placement, batching, and
parallelism scaling into a unified scheduling sys-
tem guided by runtime profiling and cost model-
ing. Some methods prioritize requests with high
KV reuse potential (Srivatsa et al., 2024; Zheng
et al., 2024). Mooncake (Qin et al., 2024) con-
siders prefix reuse and hotspot balance to select
prefill-decode instance pairs for requests.

At finer granularity, methods schedule attention

at the token level, selecting KV based on atten-
tion contributions that are either query-aware (Tang
et al., 2024; Ribar et al., 2024; Singhania et al.,
2024) or query-agnostic (Wu et al., 2024b), or
via periodic refresh that alternates full-context and
subset attention (Xu et al., 2025a). At the kernel
level, FlashInfer (Ye et al., 2025) schedules atten-
tion workloads across CUDA thread blocks based
on query and KV lengths to reduce GPU idleness.

3.2 Pipelining and Overlapping

Pipelining and overlapping (OVLP) methods hide
latency by concurrently executing KV-related com-
pute, communication, and I/O, which are key to re-
ducing idle time and improving serving efficiency.
Though often embedded in broader systems, Tab. 1
highlights methods where OVLP forms the core
technical contribution. Some distribute compute
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Table 1: Summary of representative pipelining and overlapping methods.

Method Overlapped operations (with device) Type

FastDecode (He and Zhai, 2024) CPU R-part compute ↔ GPU S-part compute Comp–Comp
Neo (Jiang et al., 2025b) CPU attention compute ↔ GPU linear ops Comp–Comp
CComp (Park and Egger, 2024) CPU MHSA compute ↔ FFN data transfer (CPU→GPU) Comp–I/O
CachedAttention (Gao et al., 2024) KV load/store (CPU↔GPU) ↔ GPU compute Comp–I/O
KVPR (Jiang et al., 2025a) GPU KV recompute ↔ KV transfer (CPU↔GPU) Comp–I/O
AsyncKV (Dong et al., 2025) GPU KV prefetch (HBM→L2) ↔ GPU attention compute Comp–I/O
PRESERVE (Yüzügüler et al., 2025) GPU KV prefetch (HBM→L2) ↔ GPU collective communication I/O–Comm

across devices, enabling pipelining between CPU
and GPU (He and Zhai, 2024; Jiang et al., 2025b).
Others overlap compute with host-device KV trans-
fer or GPU memory I/O (Park and Egger, 2024;
Gao et al., 2024; Dong et al., 2025; Jiang et al.,
2025a). Recently, Yüzügüler et al. (2025) explored
I/O-communication overlap by overlapping KV
prefetch with inter-GPU collective communication.

3.3 Hardware-aware Execution

This section focuses on hardware-aware execution
(HAE) methods that adapt KV-related operations
to the underlying heterogeneous hardware.

3.3.1 Disaggregated Inference
Disaggregated inference separates heterogeneous
computation in LLM inference and maps them to
distinct hardware resources to reduce interference
and improve utilization. Infinite-LLM (Lin et al.,
2024) adopts this principle at the operator level, dis-
aggregating attention across distributed instances.

Four concurrent papers propose to separate the
prefill and decode phases due to their inherent
asymmetry: prefill is compute-intensive, whereas
decode is memory-bound (Hu et al., 2024b; Patel
et al., 2024; Zhong et al., 2024; Strati et al., 2024).
They assign each phase to a separate set of GPU
instances, with KV caches reused across phases
via transfer or memory sharing. Mooncake (Qin
et al., 2024) takes a softer form, scheduling requests
with different KV access patterns and workloads to
different GPUs. By comparison, MuxServe (Duan
et al., 2024) also decouples the phases but colocates
them within a single GPU unit via SM partitioning.

3.3.2 Compute Offloading
Compute offloading relocates partial compute to
auxiliary devices to reduce GPU bottlenecks, utiliz-
ing hardware heterogeneity and workload features.
They often follow a compute-near-cache principle,
placing compute near KV caches for better local-
ity. Early work on CPU offloading assigns partial
decoding to the CPU (Park et al., 2023), later ex-

tended to dynamic GPU-CPU division (Park and
Egger, 2024). TwinPilots (Yu et al., 2024a) divides
transformer layers into operations and solves a lin-
ear program to assign them to GPU or CPU. Fast-
Decode (He and Zhai, 2024) and Neo (Jiang et al.,
2025b) offload attention and KV caches, using cost-
aware hardware selection and a load-aware sched-
uler, respectively. MagicPIG (Chen et al., 2025b)
also offloads attention and its retrieval tasks.

Beyond CPUs, several methods offload compute
to alternative devices. For instance, InstInfer (Pan
et al., 2024) offloads memory-intensive attention to
the computational storage drive (CSD), exploiting
the high bandwidth of flash chips. Some works
also explore processing-in-memory (PIM)-based
offloading (He et al., 2025; Park et al., 2024). These
approaches expand the compute offloading space
towards broader device heterogeneity.

4 KV Placement and Migration

This section focuses on the spatial behaviors of how
KV caches are placed and migrated across memory
hierarchies and between compute devices. Figure 5
visualizes the architecture and transfer paths.

4.1 Memory Hierarchy KV Orchestration
To scale under memory limits, we survey memory
hierarchy KV orchestration (MHO) methods that
distribute KV caches across memory hierarchies.

One common direction migrates KV entries be-
tween cross-device memory hierarchies to reduce
GPU memory pressure. These methods manage
KV caches across fast but limited GPU HBM, and
larger but slower alternatives like CPU DRAM or
SSD. Some works focus on importance-aware mi-
gration, where only critical KV entries are kept on
GPU. ALISA (Zhao et al., 2024c) and Pensieve (Yu
et al., 2025) estimate token importance online to
offload less useful ones and recover them on de-
mand. InfiniGen (Lee et al., 2024) offloads all
KV entries to the CPU and prefetches critical ones
via speculated attention scores. ShadowKV (Sun
et al., 2024) likewise offloads all value caches and
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fetches selected chunks guided by key-side land-
marks. InfLLM (Xiao et al., 2024a) retains only
local and frequently used KV blocks on the GPU.
ClusterKV (Liu et al., 2024c) and RetrievalAtten-
tion (Liu et al., 2024b) also offload the majority
of KV caches. They then retrieve semantically
relevant KV entries or clusters to reload. Simi-
larly, PQCache (Zhang et al., 2025a) compresses
all KV entries on the CPU and retrieves relevant
ones using approximate attention scores. Other
methods adopt system cost-driven strategies, guid-
ing KV placement and migration via cost models
or runtime trade-offs. FlexGen (Sheng et al., 2023)
places KV caches across GPU, CPU, and disk by
formulating a cost model that optimizes through-
put under bandwidth and latency constraints. In
contrast, many systems make runtime decisions of
KV offloading, prefetching, or recovery based on
activity status (Wu et al., 2023; Strati et al., 2024),
access patterns (Jin et al., 2024; Xiong et al., 2024),
look-ahead hints (Gao et al., 2024), or scheduling
events (Shen et al., 2024).

Another line of MHO methods targets the intra-
GPU memory hierarchy. These methods migrates
KV entries between on-chip L1/L2 caches and off-
chip HBM to hide latency. Dong et al. (2025) asyn-
chronously prefetched the upcoming KV blocks
from HBM to the L2 cache during the current com-
pute cycles. Similarly, PRESERVE (Yüzügüler
et al., 2025) prefetches KV caches during collec-
tive communication, and inserts such operations se-
lectively through graph-level optimization to avoid
cache pollution.

4.2 Compute Device KV Orchestration
Unlike hierarchical memory, compute device KV
orchestration (CDO) places and moves KV across
compute-capable devices like GPUs, CPUs, and
storage-attached processors, to enable distributed
or heterogeneous serving. FastServe (Wu et al.,
2023) divides KV caches across GPUs based on
parallelism, and transfers intermediate results via
peer-to-peer direct memory access (DMA). Other
methods split the computations and distribute both
computations and KV caches across GPUs (Patel
et al., 2024; Lee et al., 2024; Zhong et al., 2024).
For instance, DistServe (Zhong et al., 2024) pro-
poses placement schemes for prefill and decode
phases across both high and low node-affinity clus-
ters, and uses a pull-based scheme where decode
GPUs fetch KV entries as needed from prefill
GPUs acting as buffers. Beyond tightly coupled
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Figure 5: Illustration of KV cache placement and migra-
tion across memory hierarchies and compute devices.

GPU clusters, CacheGen (Liu et al., 2024e) targets
remote KV cache transmission in distributed net-
worked setups. It reduces network delay by com-
pressing KV tensors into bitstreams and adaptively
streaming them based on runtime bandwidth.

Extending this idea beyond GPU clusters, At-
tAcc (Park et al., 2024) and InstInfer (Pan et al.,
2024) offload attention to PIMs or CSDs and sup-
port KV cache migration through optimized DMA.

5 KV Representation and Retention

This section focuses on structural system behaviors
of KV cache representation and retention.

5.1 KV Cache Compression
With KV caches as the dominant memory bottle-
neck, KV cache compression (KVCC) is now a
central research thrust.

5.1.1 KV Cache Quantization
Quantization compresses floating-point tensors into
lower-precision formats. Early works enable 8-bit
and 4-bit KV quantization with minimal quality
loss (Xiao et al., 2023; Sheng et al., 2023). Some
methods further adopt mixed-precision strategies,
assigning higher precision to more critical KV en-
tries based on certain criteria. We compare existing
methods in Tab. 2 and present key insights here.

One insight is the asymmetric KV quantization
due to their distinct outlier patterns and quantiza-
tion sensitivities (Dong et al., 2024b; Liu et al.,
2024f; Wang et al., 2025; Lin et al., 2025b), com-
monly quantizing keys per-channel and values per-
token (Liu et al., 2024f; Kang et al., 2024; Hooper
et al., 2024; He et al., 2024; Su et al., 2025). An-
other key line incorporates outlier handling, by
storing in higher bitwidths (Dong et al., 2024b;
Kang et al., 2024; Hooper et al., 2024; Zhao et al.,
2024b; Zandieh et al., 2025; Su et al., 2025), or by
applying dedicated techniques shown in Tab. 2.

Recent advances explore vector quantization
(VQ), which compresses groups using codebooks
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Table 2: Summary of representative KV cache quantization (q.) methods. The “avg. bits” column shows the average
bitwidth per KV element, based on the authors’ recommended or main experimental configuration(s).

Method Granularity Prec.
mode

Important
region

Outlier
handling

Avg.
bitsKeys Values

SmoothQuant (Xiao et al., 2023) Channel-wise Fixed – Smoothing via scaling 8
FlexGen (Sheng et al., 2023) Group-wise Fixed – – 4
WKVQuant (Yue et al., 2024) 2D (channel & token) Mixed Current token Dynamic token-wise q. ~4
MiKV (Yang et al., 2024b) Token-wise Mixed Existing policy Outlier balancing ~4
QAQ (Dong et al., 2024b) Token-wise Mixed Attention-aware Sparse matrix (FP16) 1.8-2.7
Atom (Zhao et al., 2024b) Group-wise Mixed Outlier channels Selective high-bits 4.25
KIVI (Liu et al., 2024f) Channel-wise Token-wise Mixed Recent tokens Channel-wise confining ~2
CacheGen (Liu et al., 2024e) Layer-wise Mixed Shallow layers – 1.9-2.9
DecoQuant (Liu et al., 2024d) Decomposed-tensor-wise Mixed Small tensors Tensor decomposition 4
GEAR (Kang et al., 2024) Channel-wise Token-wise Fixed – Sparse matrix (FP16) 4.4/5.0
SKVQ (Duanmu et al., 2024) Group-wise Mixed Init. & recent tokens Clipped dynamic q. 2.25
KVQuant (Hooper et al., 2024) Channel-wise Token-wise Mixed First token Sparse matrix (FP16) 4.3
CQ (Zhang et al., 2024b) Token-wise channel-group Fixed – – 1.3
ZipCache (He et al., 2024) Channel-wise Chan.-sep. token-wise Mixed Norm. attention Channel-wise norm. 3.2
QJL (Zandieh et al., 2025) Token-wise Fixed – Selective high-bits 3/5
VQ-LLM (Liu et al., 2025b) Group-wise (configurable) Fixed – – 2/4
SQuat (Wang et al., 2025) Block-wise Token-wise Fixed – – 3.1
QoQ (Lin et al., 2025b) Channel-wise Fixed – Smooth attention 4
NSNQuant (Son et al., 2025) Token-wise vector Fixed – Token-wise norm. 1.2/2.2
CommVQ (Li et al., 2025) Token-wise vector Fixed – – 2
OTT (Su et al., 2025) Channel-wise Token-wise Mixed Outlier & recent tokens Full precision 2.5

to capture inter-element correlations. CQ (Zhang
et al., 2024b) couples channels and learns centroids
for 1-bit quantization. VQ-LLM (Liu et al., 2025b)
and CommVQ (Li et al., 2025) cut decode over-
head via fused VQ kernels and RoPE-commutative
codebooks. NSNQuant (Son et al., 2025) aligns
KV distributions to avoid calibration errors.

5.1.2 KV Cache Low-rank Approximation
Low-rank compression exploits hidden-dimension
redundancy by factorizing tensors into compact
components. One family directly projects KV ten-
sors to lower dimensions. FDC (Zhang and Shen,
2025) and xKV (Chang et al., 2025a) use singu-
lar value decomposition (SVD) on full KV caches,
while ShadowKV (Sun et al., 2024) focuses on
keys only. MatryoshkaKV (Lin et al., 2025a) learns
orthogonal projections optimized via knowledge
distillation. Similarly, LESS (Dong et al., 2024a)
learns a low-rank residual to recover omitted signal.

To reduce projection cost, others factorize KV
projection weights. LoRC (Zhang et al., 2024a)
uses a progressive strategy guided by layer sensi-
tivity. HeadKV (Yu et al., 2024b) and Palu (Chang
et al., 2025b) group KV heads for SVD. Re-
CalKV (Yan et al., 2025) decouples keys and val-
ues: it applies head-wise reordering for keys and
offline calibration and matrix fusion for values.

5.1.3 KV Cache Structural Compression
Unlike value-level compression, structural com-
pression modifies the organization of KV entries.
Structural sparsification prunes redundant KV

structures. CHAI (Agarwal et al., 2024) clus-
ters similar attention heads and computes attention
only for representatives. ThinK (Xu et al., 2025b)
prunes channels in keys via a query-driven criterion.
ClusterAttn (Zhang et al., 2025b) clusters intrinsic
attention patterns in the prompt after prefill.

Structural merging fuses KV entries into
shared forms. Intra-layer methods merge similar
tokens within a layer using attention scores (Zhang
et al., 2024c), cosine similarity (Wan et al., 2024),
or clustering with Gaussian-weighted fusion (Wang
et al., 2024b). For cross-layer redundancy, Sub-
Gen (Zandieh et al., 2024) and MiniCache (Liu
et al., 2024a) merge entries from adjacent similar
layers, while KVSharer (Yang et al., 2024c) surpris-
ingly finds dissimilar-layer sharing more effective.

5.2 KV Cache Retention Management
Going beyond representations, this section focuses
on mechanisms that manage the retention of the
KV cache (KVRM) during serving, such as efficient
allocation, reuse, and eviction strategies.

5.2.1 KV Cache Allocation and Reuse
Recent efforts explore dynamic KV allocation and
reuse to improve memory efficiency. Structure-
aware methods redesign KV cache layouts for flex-
ible allocation and reuse. Inspired by OS virtual
memory, PagedAttention (Kwon et al., 2023) uses
fixed-size pages with logical-to-physical mapping,
enabling lazy allocation and prefix reuse. Extend-
ing this design, vTensor (Xu et al., 2024a) decou-
ples computation from defragmentation, and vAt-

6



tention (Prabhu et al., 2025) decouples virtual and
physical memory allocation. ChunkAttention (Ye
et al., 2024) and RadixAttention (Zheng et al.,
2024) structure KV caches as prefix and radix
trees for system prompt reuse. PromptCache (Gim
et al., 2024) proposes the modular reuse of KV
caches beyond the prefix. FastSwitch (Shen et al.,
2024) adopts block group-based allocation and
enables multi-turn reuse. LeanKV (Zhang et al.,
2025c) performs parallel KV compaction to recycle
fragmented memory. FlashInfer (Ye et al., 2025)
presents a block-sparse and composable format.

Semantics-guided methods utilize semantic sig-
nals to guide KV allocation and reuse. LazyLLM
(Fu et al., 2024) selectively materializes KV only
for critical tokens, caching others for possible re-
computation. MemServe (Hu et al., 2024a) extends
this idea to distributed serving with a MemPool
system, enabling reuse across and within requests.

5.2.2 KV Cache Eviction
KV cache eviction discards less critical KV entries
(i.e., tokens) based on certain rules. Static meth-
ods, applied during or after prefill, keep the KV
cache fixed during decoding (Ge et al., 2024; Li
et al., 2024c; Zhou et al., 2024a). For example,
SnapKV (Li et al., 2024c) identifies informative to-
kens via an observation window. Yet, such methods
cannot adapt to importance shifts during decoding.

Dynamic eviction methods assess importance
and perform eviction during decoding, often based
on attention scores (Zhang et al., 2023; Liu et al.,
2023; Oren et al., 2024) or heuristics (Adnan et al.,
2024; Xiao et al., 2024b; Zhao et al., 2024a; Chen
et al., 2025a). Beyond such metrics, RoCo (Ren
and Zhu, 2024) and NACL (Chen et al., 2024) ex-
plore variance- or random-based strategies to mit-
igate bias in local attention statistics. VATP (Guo
et al., 2024) incorporates value L1-norms to com-
plement attention scores. Devoto et al. (2024) simi-
larly correlated L2-norm with attention scores.

Observing layer-wise differences in attention,
layer-aware methods assign retention budgets ac-
cordingly. PyramidKV (Cai et al., 2024) and Pyra-
midInfer (Yang et al., 2024a) favor shallow lay-
ers, while D2O (Wan et al., 2024) and CAKE (Qin
et al., 2025) allocate by attention density or layer
preferences. LaCache (Shi et al., 2025) implicitly
allocates layer budgets through a ladder-shaped re-
tention pattern and iterative eviction. At finer gran-
ularity, Ada-KV (Feng et al., 2024) reallocates
budgets across heads within each layer.

6 Observations and Open Challenges

Here, we identify observations from two comple-
mentary lenses: (i) a behavior × objective ma-
trix and (ii) a behavior-behavior synergy network,
which naturally motivate our open challenges.

Table 3 (behavior × objective matrix) marks
each behavior’s impact on serving objectives as
direct ( ) or indirect (#); stars (?) on direct cells
statistically flag ≥ 70% of papers reporting such
gains. Side bars show research density. Objec-
tives cover latency, throughput, GPU memory, in-
terconnect I/O, and energy. We also include qual-
ity impact ↓ to capture degradation as a trade-off.
Figure 6 (behavior-behavior synergy network) vi-
sualizes cross-behavior co-occurrence, with edge
thickness proportional to normalized weights. Low-
score edges are omitted, and computation details
are in App. E. Key observations are as follows.
O1. Structural behaviors receive the most atten-
tion and dominate GPU memory savings, while
other behaviors yield savings indirectly (e.g., via
migration or reuse). This indicates a community
default to prioritize memory efficiency.
O2. Temporal behaviors act most directly on
latency and throughput, since KVS, OVLP, and
HAE map cleanly to reductions in scheduling stalls,
pipeline bubbles, and device under-utilization.
However, tail latency reporting is sparse.
O3. Spatial methods primarily target intercon-
nect I/O, often paired with OVLP. Their core
focus is KV transfer, and by overlapping it with
compute, they effectively hide transfer latency.
O4. Energy is under-explored, although many
methods reduce memory or compute intensity that
should translate to energy benefits.
O5. Quality loss is universal. Temporal methods
risk inconsistent request handling; spatial methods
risk missed KV data; and structural methods di-
rectly reduce KV precision. The practical question
is to ensure such degradation is controllable and
aligned with service-level objectives (SLOs).
O6. HAE–CDO is the strongest cross-dimension
synergy. Compute layouts that exploit device het-
erogeneity often co-design with KV colocating or
transfer, yielding joint gains in utilization and I/O.
O7. KVCC remains isolated, despite its popular-
ity. Structural synergies are sparse overall, suggest-
ing a missed opportunity for co-design.

The above observations reveal both progress and
gaps of current sKis research, which motivate the
next set of system-level open challenges.
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Table 3: Behavior × objective matrix of sKis methods. Side bars encode research density (rows/columns). Cells
mark relevance levels ( = direct, #= indirect) and high-prevalence flags (?: ≥ 70% of papers report gains).

Behaviors Mean
latency

Tail
latency

Through-
put

GPU
memory

Inter-
connect I/O

Energy
/power

Quality
impact ↓

Row
density

KV-centric scheduling  ?   # # # #
Pipelining and overlapping  ? #  ? # # #
Hardware-aware execution  ?   ?   #
Memory hierarchy KV orchestration # # # #  ?   
Compute device KV orchestration # #  ? #    
KV cache compression # # #  ?    
KV cache retention management # # #  ?    

Column density
Behavior dimension:
temporal , spatial , structural .

Row density
0–10 11–20 21–30 31+

Column density
0–20 21–40 41–60 61+

OVLPKVS HAE

MHO

CDO

KVCC

KVRM

HAE - CDO

Temporal
behavior

Spatial
behavior

Structural
behavior

KVS=KV-centric scheduling OVLP=pipelining & overlapping HAE=HW-aware exec
MHO=memory hierarchy KV orchestration CDO=compute device KV orchestration
KVCC=KV cache compression KVRM=KV cache retention management

Figure 6: Behavior-behavior synergy network. Node
size reflects research density; edge thickness scales with
behavior co-occurrence. Low-score edges are omitted.

C1. SLO-driven tail control←O2. SLOs are crit-
ical to LLM serving, with tail latency dominating
user experience (Dean and Barroso, 2013; Wang
et al., 2024c), yet most systems omit detailed re-
porting. Under long contexts and bursts, KV gener-
ation, placement, migration, and compression may
interfere and trigger SLO violations. The challenge
is to attribute SLO violations to concrete KV behav-
iors and paths, motivating studies on standardized
preemption and degradation semantics, e.g., safe
interrupt points and bounded decompression costs,
to make tail outcomes controllable.
C2. Energy-aware sKis← O4. With surging data
center demand, sKis should be energy-aware, but
energy is rarely reported or optimized. Future re-
search could integrate power profiling into runtime
decisions, establish serving-time energy models,
and jointly optimize energy-latency-quality under
power constraints. Another possible direction is to
study energy-friendly KV granularities and layouts.
C3. Trustworthy and efficient sKis← O5. The
success of LLM serving must ensure not only qual-
ity but also trustworthiness (Han et al., 2025). Ef-
ficiency optimizations often consider quality loss,
yet trustworthiness is rarely measured or attributed.
The challenge lies in identifying behaviors that de-
grade trust. For example, temporal asynchrony may
expose stale KV and add nondeterminism, harming
reliability; cross-tier migration risks KV residue

or plaintext transfer, harming privacy; and KVCC
carries inherent risk of discarding rare but critical
signals, harming robustness.
C4. Generalizable HAE–CDO ← O6. While
HAE and CDO form the strongest synergy, policies
are often tailored to specific fabric or single-tenant
settings. Future directions include making such
synergy portable across heterogeneous topologies
(e.g., NVLink, NVSwitch, PCIe, CXL) and adap-
tive to multi-tenant settings with mixed workloads.
C5. Co-optimization and intermediate seman-
tics← O7. Most sKis optimize behaviors in iso-
lation, despite their interactions under bandwidth
and latency pressure. Future studies could explore
share-budget cost models for joint optimization,
For instance, to co-decide eviction, offload, and
prefetch given predicted reuse, success probability,
and I/O contention. Another useful direction is to
introduce fine-grained intermediate semantics for
behaviors, e.g., degrade-then-offload with graded
surrogates and soft-evict with per-token grace.
C6. Unified benchmarks for sKis. We summa-
rize in App. F a review of existing LLM inference
benchmarking tools and practices. Despite this re-
view, we find inconsistent metric definitions and
measurements across tools. It is worth developing
standardized benchmarks that unify performance
metrics and service-level indicators with clear defi-
nitions and window semantics.

7 Conclusion

This survey presents a systematic overview of sKis,
offering a system behavior-oriented taxonomy cov-
ering temporal, spatial, and structural dimensions.
By cross-analyzing behavior-objective impacts and
behavior-behavior synergies, we reveal overlooked
regions, potential synergies, and open challenges.
We hope this survey inspires continued exploration
toward efficient and trustworthy LLM serving.
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Limitations

This paper offers a comprehensive review and sum-
mary of current methods in the area of system-
aware KV cache optimization. However, given
the extensive body of related work and the rapidly
evolving nature of this research area, we may
have overlooked some equally valuable contribu-
tions. We tried to include all relevant studies
and references wherever feasible. Additionally,
this survey conducts no new experiments. Our
claims synthesize results reported in public papers
and open-source implementations, primarily under
mainstream platforms and common configurations,
which may constrain the generality of our conclu-
sions. Finally, we outline several KV-centric re-
search directions to improve the efficiency in LLM
serving, including SLO-first tail-latency control,
energy-aware sKis, trustworthy sKis, generalizable
HAE-CDO, co-optimization and intermediate se-
mantics, and unified benchmarks. We plan to leave
these aspects for future work.
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A Design of Our Taxonomy

Our taxonomy follows a system behavior-oriented
view of sKis introduced in § 2 and respects the
domain boundary. Specifically, we classify tech-
niques by their operational impact along three
dimensions: temporal, spatial, and structural.
This behavior-oriented perspective follows estab-
lished practice in machine learning systems re-
search (Xiao et al., 2018; Rajbhandari et al., 2020;
Wang et al., 2021; Jiang et al., 2022; Qiu et al.,
2024; Jiang et al., 2024) and aligns closely with
how serving systems are actually built and opti-
mized in practice, allowing diverse methods to be
interpreted under a unified framework.

For example, many methods perform KV cache
selection by identifying tokens (i.e., KV entries)
that are more or less important for future compu-
tation. In our taxonomy, we do not treat selection
itself as a category. In contrast, we classify methods
based on the system action taken after selection:
• If unimportant KV entries are directly discarded

to free memory, the method is categorized as KV
cache eviction (cf. § 5.2.2) under KV representa-
tion and retention (structural dimension).

• If unimportant KV entries are offloaded to sec-
ondary storage for possible future retrieval and
reload, the method falls under cross-device mem-
ory hierarchy (cf. § 4.1) in KV placement and
migration (spatial dimension).

• If the tokens are retained in memory but ex-
cluded from computation, the method is consid-
ered token-level scheduling, which is categorized
as KV-centric scheduling (cf. § 3.1) under KV
execution and scheduling (temporal dimension).

In short, selection is treated as a preparatory step,
not a classification criterion itself. This helps pre-
vent ambiguity and ensures that each category in
our taxonomy corresponds to a distinct system-
level optimization behavior.

B Related Surveys

A rapidly growing body of surveys reviews efficient
LLM inference and serving from algorithms to sys-
tems, e.g., speculative decoding (Xia et al., 2024),
algorithms-to-systems serving (Miao et al., 2023),
roofline-style analyses (Yuan et al., 2024), and
broader resource-efficient or compression-oriented
perspectives (Wang et al., 2024a; Bai et al., 2024;
Li et al., 2024a; Xu et al., 2024b; Zhou et al.,
2024b). In contrast, dedicated surveys that fo-
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Table 4: Comparison with existing surveys related to efficient LLM inference or serving.

Survey KV-
centric

Serving
only

No
retrain

System
metrics Taxonomy principle

Xia et al. (2024) 3 3 Stages (draft, verify)
Miao et al. (2023) 3 3 3 Layered pipeline (algorithm-, system-level)
Yuan et al. (2024) 3 3 3 Layered pipeline (parameter-, algorithm-, system-, hardware-level)

Wang et al. (2024a) Compression families (quantization, pruning, knowledge
distillation, compact architecture design, dynamic networks)

Li et al. (2024a) 3 3 3
System components (KV cache and memory, computation, cloud
deployment, emerging research fields)

Bai et al. (2024) 3
Lifecycle (architecture design, pre-training, fine-tuning, inference,
system design)

Zhou et al. (2024b) 3 Layered pipeline (data-, model-, system-level)
Xu et al. (2024b) 3 Layered pipeline (architecture, algorithm, systems)

Liu et al. (2025a) 3 3 3
KV compression families (selective token, quantization, attention
compression, hybrid)

Shi et al. (2024) 3 Lifecycle (training, deploy, post-training)
Li et al. (2024b) 3 Abstraction level (token-, model-, system-level)

This survey (sKis) 3 3 3 3 System behaviors (temporal, spatial, structural dimensions)

cus specifically on the KV cache remain rare. Shi
et al. (2024) adopted a lifecycle-based taxonomy
spanning training-stage, deploy-stage, and post-
training optimizations. Li et al. (2024b) categorized
KV cache management strategies into token-level,
model-level, and system-level optimizations. Liu
et al. (2025a) focused on compression strategies of
the KV cache, such as selective token strategies,
quantization, and attention compression.

Relation to existing surveys. While several re-
cent surveys have covered related areas, this survey
distinguishes itself by offering a distinct system
behavior-oriented perspective. General LLM serv-
ing (inference) surveys typically treat KV cache op-
timization as a minor component within the broader
pipelines. KV-specific surveys are closest to our
topic. However, they mostly organize methods
by lifecycle stages or by abstraction levels, leav-
ing the serving-time system behavior of the KV
cache largely unexamined. Instead, we concentrate
exclusively on the sKis scope (i.e., serving-time,
KV-centric, system metrics, no retraining or ar-
chitecture change) and aim to provide a deeper
understanding within this scope. By classifying
methods according to their impact along temporal,
spatial, and structural dimensions, our survey en-
ables cross-behavior and behavior×objective analy-
sis, which complements prior surveys and clarifies
actionable research gaps for KV-centric serving.
Table 4 shows a comparative summary.

C Supplementary Paper Categorization

Table 5 provides a supplementary mapping of all
surveyed methods across the full taxonomy of

7 subcategories under 3 major optimization di-
mensions. The finer-grained categories in this ta-
ble include (i) KV-centric scheduling (cf. § 3.1),
(ii) pipelining and overlapping (cf. § 3.2), (iii)
hardware-aware execution (cf. § 3.3), (iv) memory
hierarchy KV orchestration (cf. § 4.1), (v) com-
pute device KV orchestration (cf. § 4.2), (vi) KV
cache compression (cf. § 5.1), and (vii) KV cache
retention management (cf. § 5.2).

As discussed in § 2, to maintain structural clar-
ity and prevent overly diffuse categorization, each
method is primarily discussed under one or two key
optimization categories that reflect its main contri-
butions. These categories are denoted as primary
category ( ) in Tab. 5. However, some methods
also touch upon additional optimization aspects
that are not covered or elaborated in the main sec-
tions. For example, to support its “hardware-aware
execution” design of decoupling prefill and decode
phases across heterogeneous devices, Splitwise (Pa-
tel et al., 2024) incorporates a fine-grained layer-
wise transmission strategy that transmits the KV
cache from the prefill node to the decode node and
overlaps such KV cache transmission with the com-
putation in the prefill phase. They serve as enabling
mechanisms that make the decoupled strategy feasi-
ble and link Splitwise to the “device-level KV trans-
fer” and “pipelining and overlapping” categories.
We summarize these omitted associations in Tab. 5,
denoted byG#, to provide a more complete mapping
for readers interested in cross-cutting techniques.

Venue Diversity. We can observe from the
“Venue” column of Tab. 5 that the methods span
a broad range of research communities. The pub-
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Table 5: Full mapping of representative methods reviewed in this paper to their corresponding sKis categories.
Methods are chronologically ordered with publication venues.

Methods Venue Taxonomy of sKis

KV-centric scheduling

Pipelining and overlapping

Hardware-aware execution

Memory hierarchy KV orchestration

Compute device KV orchestration

KV cache compression

KV cache retention management

FastServe (Wu et al., 2023) arXiv G#   
SmoothQuant (Xiao et al., 2023) ICML  
FlexGen (Sheng et al., 2023) ICML G# G#   
CCompv1 (Park et al., 2023) APSys   G#
vLLM (Kwon et al., 2023) SOSP G#  
H2O (Zhang et al., 2023) NeurIPS  
Scissorhands (Liu et al., 2023) NeurIPS  
TetriInfer (Hu et al., 2024b) arXiv   G#
SubGen (Zandieh et al., 2024) arXiv  
RoCo (Ren and Zhu, 2024) arXiv  
WKVQuant (Yue et al., 2024) arXiv  
MiKV (Yang et al., 2024b) arXiv  
FastDecode (He and Zhai, 2024) arXiv   G# G#
QAQ (Dong et al., 2024b) arXiv  
RAGCache (Jin et al., 2024) arXiv G#  
AttAcc (Park et al., 2024) ASPLOS   
FastGen (Ge et al., 2024) ICLR  
StreamingLLM (Xiao et al., 2024b) ICLR  
Preble (Srivatsa et al., 2024) ICLR  G# G#
Keyformer (Adnan et al., 2024) MLSys  
Atom (Zhao et al., 2024b) MLSys  
PromptCache (Gim et al., 2024) MLSys  
PyramidKV (Cai et al., 2024) arXiv  
HeadKV (Yu et al., 2024b) arXiv  
LESS (Dong et al., 2024a) arXiv  
D2O (Wan et al., 2024) arXiv   
Splitwise (Patel et al., 2024) ISCA G#   
ALISA (Zhao et al., 2024c) ISCA  G# G#
Infinite-LLM (Lin et al., 2024) arXiv G#   
Ada-KV (Feng et al., 2024) arXiv  
Mooncake (Qin et al., 2024) arXiv  G#  G#
DistServe (Zhong et al., 2024) OSDI G#   
InfiniGen (Lee et al., 2024) OSDI  
CachedAttention (Gao et al., 2024) ATC G#   G# G#
LazyLLM (Fu et al., 2024) arXiv  
KVMerger (Wang et al., 2024b) arXiv  
vTensor (Xu et al., 2024a) arXiv  
KIVI (Liu et al., 2024f) ICML  
CHAI (Agarwal et al., 2024) ICML  
CaM (Zhang et al., 2024c) ICML  
MuxServe (Duan et al., 2024) ICML   G# G#
Quest (Tang et al., 2024) ICML  
SparQAttention (Ribar et al., 2024) ICML  
DéjàVu (Strati et al., 2024) ICML   G# G#
CacheGen (Liu et al., 2024e) SIGCOMM G#   
DecoQuant (Liu et al., 2024d) ACL  
NACL (Chen et al., 2024) ACL  
PyramidInfer (Yang et al., 2024a) ACL  
ChunkAttention (Ye et al., 2024) ACL  
InstInfer (Pan et al., 2024) arXiv G#   G#
TwinPilots (Yu et al., 2024a) SYSTOR G#  G#
GEAR (Kang et al., 2024) arXiv  
LoRC (Zhang et al., 2024a) arXiv  

Continued on next page
 = primary category with main analysis; G# = secondary category omitted or only briefly mentioned in our paper to maintain
focused classification.
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Continued from previous page

Methods Venue Taxonomy of sKis

KV-centric scheduling

Pipelining and overlapping

Hardware-aware execution

Memory hierarchy KV orchestration

Compute device KV orchestration

KV cache compression

KV cache retention management

LayerKV (Xiong et al., 2024) arXiv  G#  G#
CCompv2 (Park and Egger, 2024) PACT   G#
KVSharer (Yang et al., 2024c) arXiv  
LAMPS (Shahout et al., 2024) arXiv  G# G#
BUZZ (Zhao et al., 2024a) arXiv  
Palu (Chang et al., 2025b) arXiv  
TokenSelect (Wu et al., 2024b) arXiv  G#
LoongServe (Wu et al., 2024a) SOSP  G# G# G#
SKVQ (Duanmu et al., 2024) arXiv  
TOVA (Oren et al., 2024) EMNLP  
VATP (Guo et al., 2024) EMNLP  
L2KV (Devoto et al., 2024) EMNLP  
FastSwitch (Shen et al., 2024) arXiv G# G#   
KVQuant (Hooper et al., 2024) NeurIPS  
CQ (Zhang et al., 2024b) NeurIPS  
ZipCache (He et al., 2024) NeurIPS  
SnapKV (Li et al., 2024c) NeurIPS  
MiniCache (Liu et al., 2024a) NeurIPS  
InfLLM (Xiao et al., 2024a) NeurIPS  G#
RadixAttention (Zheng et al., 2024) NeurIPS   
Loki (Singhania et al., 2024) NeurIPS  
DynamicKV (Zhou et al., 2024a) arXiv  
MemServe (Hu et al., 2024a) arXiv  
RetrievalAttention (Liu et al., 2024b) arXiv  
QJL (Zandieh et al., 2025) AAAI  
VQ-LLM (Liu et al., 2025b) HPCA  
xKV (Chang et al., 2025a) arXiv  
SQuat (Wang et al., 2025) arXiv  
vAttention (Prabhu et al., 2025) ASPLOS G#  
PAPI (He et al., 2025) ASPLOS  
Pensieve (Yu et al., 2025) EuroSys G# G#  G#
LeanKV (Zhang et al., 2025c) arXiv G#  
AsyncKV (Dong et al., 2025) arXiv  G#  
ShadowKV (Sun et al., 2024) arXiv G#   
CAKE (Qin et al., 2025) ICLR  
ThinK (Xu et al., 2025b) ICLR  
MatryoshkaKV (Lin et al., 2025a) ICLR  
MagicPIG (Chen et al., 2025b) ICLR  
QoQ (Lin et al., 2025b) MLSys  
FlashInfer (Ye et al., 2025) MLSys  G# G#  
Neo (Jiang et al., 2025b) MLSys   G#
NSNQuant (Son et al., 2025) arXiv  
PRESERVE (Yüzügüler et al., 2025) arXiv  G#  
ReCalKV (Yan et al., 2025) arXiv  
FDC (Zhang and Shen, 2025) arXiv  
ClusterKV (Liu et al., 2024c) DAC  
PQCache (Zhang et al., 2025a) SIGMOD G#  G#
SepLLM (Chen et al., 2025a) ICML  
CommVQ (Li et al., 2025) ICML  
LaCache (Shi et al., 2025) ICML  
ClusterAttn (Zhang et al., 2025b) ACL  
RefreshKV (Xu et al., 2025a) ACL  
OTT (Su et al., 2025) ACL  
KVPR (Jiang et al., 2025a) ACL  G# G#

 = primary category with main analysis; G# = secondary category omitted or only briefly mentioned in our paper to maintain
focused classification.
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lication venues include top-tier machine learning
and artificial intelligence conferences (e.g., ICLR,
ICML, NeurIPS, AAAI), natural language process-
ing venues (e.g., ACL, EMNLP), systems and archi-
tecture conferences (e.g., ASPLOS, ISCA, HPCA,
ATC, EuroSys, OSDI, SOSP, SC, SIGCOMM,
DAC), and interdisciplinary forums such as ML-
Sys and SIGMOD. We also include some impactful
arXiv submissions. This diversity underscores the
inherently cross-cutting nature of KV cache opti-
mization, which lies at the intersection of model
serving and system efficiency. It also highlights
the growing recognition of this topic across various
research communities.

D Key Takeaways

Through a comprehensive literature review of sKis,
we have discovered takeaways across several do-
mains. These include scheduling & overlapping,
hardware-aware execution, placement & migration,
compression, and eviction.

D.1 Scheduling and Overlapping

KVS and OVLP directly target runtime stalls. KVS
prioritizes limited resources for the most reusable
and latency-sensitive work; OVLP is also a type of
scheduling, aligning compute with data transfer to
fill pipeline bubbles.
¤Takeaway:
3 KVS is a multi-objective optimization problem.

Modern schedulers often prioritize KV usage
over time rather than FLOPS, and KV reuse-
driven scheduling is the default paradigm.

3 KVS is enhanced by prediction. Lightweight
predictors plus a robust policy outperform tradi-
tional FCFS or SJF schemes (Hu et al., 2024b;
Qin et al., 2024; Shahout et al., 2024).

3 The key to OVLP is to perform at the true bottle-
neck with asymmetric pipelines. For example,
keep compute-bound prefill on GPU, and over-
lap memory-bound decode attention and KV
with I/O or collective communication.

3 Preferring recompute to transfer, e.g., partially
recomputing KV while streaming the rest (Jiang
et al., 2025a), or prefetching KV caches into L2
during collectives (Dong et al., 2025; Yüzügüler
et al., 2025), can substantially reduce pipeline
bubbles, especially when bandwidth is the bot-
tleneck.

D.2 Hardware-aware Execution

HAE improves throughput, reduces mean/tail la-
tency, and extends servable context without retrain-
ing, by decoupling phases and mapping execution
to hardware capabilities.

¤Takeaway:

3 Compute should follow hardware capabilities.
When executing on a given device, it is critical
to specialize kernels, tiling, and memory layouts
to that device.

3 Create KV locality within the device rather than
moving KV across devices. It is effective to
keep hot KV caches close to the compute.

3 Compute-intensive prefill and memory-bound
decode benefit from phase-specific execution
mappings (cf. § 3.3.2).

3 HAE should adapt to the access granularity and
parallelism of the target device.

D.3 Placement and Migration

MHO and CDO govern where KV caches reside
across the memory hierarchy and how they transfer
during serving. They act directly on interconnect
bandwidth bottlenecks, with GPU memory relief
emerging as a by-product of tiering and offloading.

¤Takeaway:

3 It is a common MHO pattern to keep only future-
useful KV caches on the GPU, demote the rest
to CPU or SSD, and reload guided by attention
cues. Cost models can be effectively used to
choose CPU, GPU, SSD paths (Sheng et al.,
2023; Jin et al., 2024).

3 Most MHO and CDO solutions overlap I/O
transfers with compute or collectives to hide
latency, although they often serve OVLP as a
secondary category.

3 Under interconnect bottlenecks, co-adaptation
of transfer paths, precisions, or decoding strate-
gies can reduce TTFT and SLO violations com-
pared with static schemes (Zhong et al., 2024;
Liu et al., 2024e; Shen et al., 2024).

3 Migration granularity and path should align with
attention access patterns and device access units.

3 Prefetch-evict co-optimization remains rare.
The field would benefit from a unified objec-
tive that jointly accounts for prefetch deadlines
and eviction risk.
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D.4 KV Cache Compression

KV caches can quickly overwhelm the memory
capacity of GPUs and pose bandwidth pressure as
context length or batch size increases, since the
size of the KV cache scales linearly with these two
factors. Consequently, prior works have proposed
various approaches to directly compress the KV
cache, such as quantization, low-rank approxima-
tion, and structural compression.

¤Takeaway:

3 Outlier handling dominates performance at low
bitwidths or ranks (Su et al., 2025). Isolating
outliers (e.g., higher bitwidths) for value-level
compression methods prevents worst-case error
explosions.

3 Recent advances trend toward applying vector
quantization (VQ) for KV cache quantization,
and they often reach very low-bit (i.e., 1-2 bits)
quantization with modest quality loss (Zhang
et al., 2024b; Liu et al., 2025b; Son et al., 2025;
Li et al., 2025). VQ (Gray, 1984) is a pop-
ular technique to represent high-dimensional
data using a smaller set of representative vec-
tors, known as codebooks. Variants of VQ like
product quantization (Jegou et al., 2010) and
additive quantization (Babenko and Lempitsky,
2014) have been proposed to applied to KVCC.

3 KVCC has been developed mostly at the algo-
rithm level, while system-level integration is
thin (cf. Fig. 6). Thus, memory reductions often
fail to translate into lower mean/tail latency or
higher throughput unless KVCC is co-designed
with execution, migration, and runtime control.

We further discuss the co-design of KVCC with
execution, migration, and runtime control (the last
akeaway) as follows: (i) Co-design with execution:
quantization/de-quantization and low-rank updates
can be fused into attention kernels or overlapped
with compute, so compression overhead does not
re-introduce stalls in the decode pipeline; (ii) Co-
design with migration: aligning compressed pack-
ing units with device access units ensures that mem-
ory footprint reductions translate into fewer, fully
utilized transfer chunks that fit overlap windows.
(iii) Co-design with runtime control: exposing tun-
able parameters (e.g., bitwidth, rank, sparsity) to
the runtime and adjusting them under SLOs re-
mains an opportunity beyond static configurations.

D.5 KV Cache Eviction

KV cache eviction decides which past tokens re-
main resident under tight memory and bandwidth
budgets, so that long contexts can be served. It oper-
ates in both phases and trades memory and transfer
cost against utility to the attention compute.
¤Takeaway:
3 KV cache eviction is important in both prefill

and decode. The former focuses on the KV
cache to be computed, while the latter focuses
on the KV cache that has been computed.

3 Most systems retain a small recent window, a
tiny set of “attention sink” anchor tokens (Xiao
et al., 2024b; Gu et al., 2025), and a few “heavy
hitters” (Zhang et al., 2023) identified by cumu-
lative attention.

3 Token importance should not be judged by at-
tention scores alone. KV norms provide strong
and low-overhead signals (Guo et al., 2024; De-
voto et al., 2024). We also recommend calibrat-
ing token importance scores before using them
for eviction (Sundararajan et al., 2017; Smilkov
et al., 2017; Yang et al., 2023a,b).

3 It is effective to use heterogeneous budgets
across layers or heads, rather than a uniform up-
per bound (Cai et al., 2024; Yang et al., 2024a;
Wan et al., 2024; Qin et al., 2025; Shi et al.,
2025; Feng et al., 2024). For example, shal-
low layers often deserve larger retention, while
deeper layers emphasize global semantics and
tolerate more sparsity.

3 Pairing KV cache eviction with similarity-based
recall or merge is stronger than hard deletion,
preserving salient context under tight budgets
and improving long-context consistency.

E Behavior-behavior Synergy Compute

As discussed in § 6, Fig. 6 presents a behavior-
behavior synergy network that summarizes how
often behaviors co-occur within the same paper
across seven behaviors, including KVS, OVLP,
HAE, MHO, CDO, KVCC, and KVRM. Below we
detail the procedure for calculating the normalized
co-occurrence strengths for behavior pairs, which
are reflected by the edge thicknesses in Fig. 6.

Let B ={KVS, OVLP, HAE, MHO, CDO,
KVCC, KVRM} denote the set of system behav-
iors and P the set of papers. For paper p ∈ P
and behavior i ∈ B, let the categorical label be
`p,i ∈ {P, S,NA}, which means primary category
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KVS OVLP HAE MHO CDO KVCC KVRM

KVS – 2.25 4.75 3.5 1.75 0 6
OVLP 2.25 – 9 6.5 6 2.75 2
HAE 4.75 9 – 3.25 9.5 1.25 3
MHO 3.5 6.5 3.25 – 2 3 5.25
CDO 1.75 6 9.5 2 – 1.25 2.25
KVCC 0 2.75 1.25 3 1.25 – 1.75
KVRM 6 2 3 5.25 2.25 1.75 –

Table 7: Raw (pre-normalization) co-occurrence matrix
that encodes the weighted co-occurrence strength be-
tween system behaviors across papers.

( ), secondary category (G#), or no category. Each
`p,i can be observed from Tab. 5. We map labels to
numeric weights by ω(`p,i) = 1[`p,i=P]+α1[`p,i=S]

with α = 0.5, where 1[·] is the indicator function
that equals 1 when the stated condition holds and 0
otherwise.

Constructing raw co-occurrence. The raw co-
occurrence matrix C ∈ R|B|×|B| aggregates pair-
wise co-appearance strength, as shown in Tab. 7.
Each cell Cij of the behavior pair i, j is defined by
summing the per-paper products of their weights:

Cij =
∑
p∈P

ω(`p,i)ω(`p,j).

Equivalently, each paper p contributes 1 if both
behaviors are primary, α if one is primary and the
other secondary, α2 if both are secondary, and 0
otherwise. The matrix C is symmetric.

Constructing normalized synergy. While the
raw co-occurrence matrixC captures absolute over-
lap, it is biased by marginal popularity, because the
behaviors with larger research density tend to have
larger Cij even without specific affinity. We there-
fore normalize C using the Tanimoto coefficient.
We define the per-behavior squared weight Qi:

Qi =
∑
p∈P

w2
p,i.

Then the Tanimoto-normalized synergy matrix S ∈
R|B|×|B| reflects relative co-occurrence strength on
a [0, 1] scale, as shown in Tab. 8. Each cell in Sij of
the behavior pair i, j is defined as the ratio of their
shared weighted presence to their squared union:

Sij =
Cij

Qi +Qj − Cij
.

Compared to Cij , this score controls marginal sizes
and is visualized in Fig. 6. We draw an undirected
edge between behaviors i and j iff Sij > θ, where

KVS OVLP HAE MHO CDO KVCC KVRM

KVS – 0.09 0.17 0.12 0.08 0 0.14
OVLP 0.09 – 0.43 0.28 0.39 0.06 0.05
HAE 0.17 0.43 – 0.10 0.53 0.02 0.06
MHO 0.12 0.28 0.10 – 0.08 0.06 0.11
CDO 0.08 0.39 0.53 0.08 – 0.03 0.05
KVCC 0 0.06 0.02 0.06 0.03 – 0.02
KVRM 0.14 0.05 0.06 0.11 0.05 0.02 –

Table 8: Normalized synergy matrix that encodes rela-
tive co-occurrence strength between behaviors across
papers. Scores greater than the threshold θ = 0.14 are
highlighted and visualize in Fig. 6 accordingly.

we set the threshold θ = 0.14; edges below the
threshold are omitted to reduce clutter. Edge thick-
ness is proportional to Sij .

F Benchmarking for sKis

In this section, we focus on system-performance
benchmarking during serving, which measures ac-
tual performance metrics like latency, throughput,
service-level objectives (SLOs), KV cache mem-
ory and bandwidth, and energy. In contrast, task or
quality benchmarks focus on datasets and accuracy
metrics. In our survey they serve only as quality
gates and are not primary evaluation objectives. We
refer interested readers to another survey (Li et al.,
2024b) for details.

Many popular inference frameworks or sys-
tems, such as vLLM (Kwon et al., 2023),
TensorRT-LLM (NVIDIA, 2023), and DeepSpeed-
Inference (Aminabadi et al., 2022), provide bench-
mark scripts that measure system metrics for their
local checks but remain framework-specific. We
therefore view them as systems under test rather
than the benchmark itself. In this section, we sur-
vey benchmarking efforts that provide a platform-
and framework-agnostic way to obtain system mea-
surements. They primarily fall into two categories:
client-side tools and benchmark suites.

Client-side tools define and enforce metric se-
mantics. Using one tool across systems yields
directly comparable numbers. LLMPerf (Ray,
2024) targets API benchmarking and provides
system metric measurement on service endpoints.
NVIDIA NIM benchmarking guide (NVIDIA,
2025b) defines the common metrics of time to first
token (TTFT), end-to-end request latency, inter-
token latency (ITL), tokens per second (TPS), and
requests per second (RPS). The companion tool
GenAI-Perf (NVIDIA, 2025a) emits the defined
metrics and implements the stable-window analysis
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across OpenAI-API-compatible backends. How-
ever, although client-side tools offer specific met-
rics for LLM-based applications, we find inconsis-
tent metric definitions and measurements across
different tools.

Benchmark suites mean standardized packages
of workloads, procedures, and reporting rules that
specify what to run, how to run it, and what to
report. Such suites typically cover multiple sys-
tems and hardware and enable reproducible com-
parisons. MLPerf Inference (Reddi et al., 2020)
emphasizes inference system comparison, and its
v5.0 includes LLM scenarios with accuracy valida-
tion. LLM-Inference-Bench (Chitty-Venkata et al.,
2024) evaluates the inference performance of the
LLaMA model family across a variety of hardware
platforms. BALI (Jurkschat et al., 2025) measures
LLM inference across six frameworks or acceler-
ation approaches. It divides inference into three
measured stages: setup, tokenize, and generate,
and supports two settings: a technical setting with
a fixed number of tokens, and a prompt-to-answer
setting that includes tokenization.

G The Use of AI assistants

We used ChatGPT minimally for wording and
grammar suggestions. No technical claims, tax-
onomy decisions, or analyses were produced by
the assistant. All content was authored, verified,
and edited by the authors.
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