
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Staleness-Reduction Mini-Batch K -Means
Xueying Zhu , Jie Sun, Zhenhao He, Jiantong Jiang, and Zeke Wang

Abstract— K -means (km) is a clustering algorithm that has
been widely adopted due to its simple implementation and
high clustering quality. However, the standard km suffers from
high computational complexity and is therefore time-consuming.
Accordingly, the mini-batch (mbatch) km is proposed to signif-
icantly reduce computational costs in a manner that updates
centroids after performing distance computations on just a
mbatch, rather than a full batch, of samples. Even though the
mbatch km converges faster, it leads to a decrease in convergence
quality because it introduces staleness during iterations. To this
end, in this article, we propose the staleness-reduction mbatch
(srmbatch) km, which achieves the best of two worlds: low
computational costs like the mbatch km and high clustering
quality like the standard km. Moreover, srmbatch still exposes
massive parallelism to be efficiently implemented on multicore
CPUs and many-core GPUs. The experimental results show that
srmbatch can converge up to 40×–130× faster than mbatch when
reaching the same target loss, and srmbatch is able to reach
0.2%–1.7% lower final loss than that of mbatch.

Index Terms— Clustering, K -means (km), machine learning,
staleness-reduction.

I. INTRODUCTION

K-MEANS is a very popular clustering algorithm and
has been widely adopted in machine learning areas for

tasks like image segmentation [1], data mining [2], crime
prediction [3], and so on. It aims to divide data points into a
predefined number of clusters so that data points in the same
cluster are more similar to each other than to data points in
other clusters.

The standard k-means (km) was first proposed among all
kinds of km algorithms. The process of km contains the
initialization step, the assignment step, and the update step.
In the initialization step, it picks several samples from the
dataset randomly and takes these samples as the centroids of

Manuscript received 7 January 2023; accepted 15 May 2023. This work was
supported in part by the Program of Zhejiang Science and Technology under
Grant 2022C01044; in part by the National Key Research and Development
Program of China under Grant 2022ZD0119301; in part by the Fundamental
Research Funds for the Central Universities under Grant 226-2022-00151; and
in part by the Key Laboratory for Corneal Diseases Research of Zhejiang,
Starry Night Science Fund of Zhejiang University Shanghai Institute for
Advanced Study under Grant SN-ZJU-SIAS-0010. (Corresponding author:
Zeke Wang.)

Xueying Zhu, Jie Sun, and Zeke Wang are with the Collaborative Innovation
Center of Artificial Intelligence, Department of Computer Science, Zhe-
jiang University, Hangzhou 310027, China (e-mail: zhuxueying@zju.edu.cn;
jiesun@zju.edu.cn; wangzeke@zju.edu.cn).

Zhenhao He is with the Systems Group, Department of Computer Science,
ETH Zurich, 8092 Zurich, Switzerland (e-mail: zhe@inf.ethz.ch).

Jiantong Jiang is with the Department of Computer Science and
Software Engineering, The University of Western Australia, Crawley,
WA 6009, Australia (e-mail: jiantong.jiang@research.uwa.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3279122.

Digital Object Identifier 10.1109/TNNLS.2023.3279122

clusters. In the assignment step, each data point in the dataset
is sampled and assigned to its nearest centroid. In the update
step, each cluster centroid is updated to be the centroid of
all the samples assigned to it in the latest assignment step.
The assignment step and the update step make up an iteration.
These two steps run iteratively until the centroids stop chang-
ing. We can see that in km, centroids are only updated once
after performing distance computation between all centroids
and all data points, which brings km high clustering quality1

and also massive computational complexity. As a result, the
practice of km especially on large datasets is either time-
consuming or computing-consuming.

To reduce computational costs, Sculley proposes the mini-
batch (mbatch) km algorithm [4] that in the assignment step, it
computes the distances on a mbatch, rather than a full batch, of
samples per iteration, and then in the update step, each cluster
centroid is updated to be the centroid of samples assigned to
it from all passed assignment steps, instead of just from the
nearest assignment step. It’s worth noting that for mbatch,
multiple samples which are used to update centroids in a
certain iteration may match the same data point because data
points can be sampled repeatedly to build different mbatchs.
We define assignment result of a data point as the centroid
id that the data point is assigned to. An assignment result is
generated when a data point is sampled and assigned to a
centroid in the assignment step. Besides, we use the word
contribute to describe the operation that the corresponding
sample of an assignment result is used to update centroids
in a way we describe above for km and mbatch. As such,
mbatch enjoys a relatively fast convergence rate due to more
frequent centroid updates while suffering from a relatively low
clustering quality because many stale assignment results which
belong to the same data point contribute to new centroids.
For example, suppose data point a⃗ is sampled three times in
different iterations in total. The sample in the first iteration is
assigned to the first centroid, the sample in the 100th iteration
is assigned to the second centroid, and the sample in the
200th iteration is assigned to the third centroid. In this case,
mbatch uses three different assignment results of a⃗ to update
centroids in the 200th iteration. The assignment results of a⃗ in
the first iteration and the 100th iteration are staler compared
with the assignment in the 200th iteration. However, mbatch
still allows these stale assignments to contribute to the latest
centroids, which decreases the clustering quality. To quantify
the level of the participation of stale assignment results, we

1The clustering quality is qualified by loss. The loss equals the sum of
squared distances between each data point in the dataset and the corresponding
centroid which is the closest one to the data point. The lower the loss is, the
better the clustering quality is.

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7550-9379
https://orcid.org/0000-0001-8550-9241

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

first define an epoch as a certain number of iterations within
which all data points in the dataset have been traversed once
in mathematical expectation and define the epoch gap as the
number of epochs between where the assignment result is
generated and where it contributes to the centroids. Based
on these two definitions, we then introduce a concept called
centroid staleness. The centroid staleness is defined to be
the average epoch gap of assignment results contributing to
the centroids. In each iteration of an epoch, the centroid set
updated has its own centroid staleness. Intuitively, the higher
the level of the participation of stale assignment results is, the
higher the average epoch gap is and the higher the centroid
staleness is.

To alleviate mbatch’s inferior clustering quality caused by
centroid staleness, we propose the staleness-reduction mbatch
(srmbatch) km algorithm that keeps performing distance com-
putations on a mbatch of samples per iteration like mbatch
while maintaining a lower centroid staleness compared with
mbatch. The key idea of srmbatch is to leverage mbatch to
frequently update centroids, while only allows the most recent
assignment results of data points in the dataset to participate
in centroid update. As such, srmbatch can achieve a high
clustering quality due to less centroid staleness while keeping
a fast convergence rate. Meanwhile, srmbatch still exposes
massive parallelism to be efficiently implemented on multicore
CPUs and many-core GPUs.

In this article, our contributions are as follows.
1) We propose the k-means srmbatch algorithm

(Section III) to achieve a high clustering quality
like km (Section III-C) and low computational costs
like mbatch (Section III-B). Both two characteristics are
proved by theoretical analysis and experimental results.

2) We theoretically analyze the centroid staleness of km,
mbatch, and srmbatch. We prove by equations that
the centroid staleness of srmbatch is lower than that
of mbatch. We qualitatively analyze the relationship
between the centroid staleness and the clustering quality
to prove that lower centroid staleness leads to higher
clustering quality.

3) We conduct extensive experiments to verify the effi-
ciency of srmbatch. Experimental results show that
srmbatch achieves a higher clustering quality, faster
convergence speed, and almost the same massive degree
of parallelism compared with mbatch.

This article is organized as follows. In Section II, we
introduce the km algorithm and the mbatch algorithm in detail.
In Section III, we put forward srmbatch and theoretically
analyze its centroid staleness compared with km and mbatch.
In Section IV, we organize experiments to compare the con-
vergence performance among km, mbatch, and srmbatch.

II. BACKGROUND

In this section, we analyze the advantages and the disadvan-
tages of both km and mbatch. Before diving into the details
of each algorithm, we emphasize the definition of the epoch
which is used frequently in the following content. We define an
epoch as a certain number of iterations within which all data

Algorithm 1 Standard K -Means
Input : K : number of clusters,

X⃗ : dataset,
N : number of data points in the dataset X⃗ ,
T : number of iterations.

Output: C⃗ : cluster centroid set.
/* 1, Initialization Step */

1 C⃗ ← K samples picked randomly from X⃗
2 v⃗← 0 /* Per-iteration counter for

current iteration */
3 S⃗← 0 /* Per-iteration sum for current

iteration */
4 for i = 0 to T − 1 do

/* 2, Assignment Step */
5 for j = 0 to N − 1 do

/* Function f for the closest
centroid */

6 c← f (C⃗, X⃗ [j])
/* Update per-iteration counter

*/
7 v⃗[c] ← v⃗[c] + 1

/* Update per-iteration sum */
8 S⃗[c] ← S⃗[c] + X⃗ [j]

/* 3, Update Step */
9 for j = 0 to K − 1 do

/* Update centroids */
10 C⃗[j] ← S⃗[j]/v⃗[j]

/* Update per-iteration counter
& sum */

11 v⃗[j] ← 0
12 S⃗[j] ← 0

points in the dataset have been traversed once in mathematical
expectation.

A. Standard km

The standard km algorithm is widely adopted in real
applications because of its high clustering quality and simple
implementation. The detailed flow of km, as illustrated in
Algorithm 1, consists of three steps: 1) the initialization step,
where it picks K random centroids for the clusters (Line 1);
2) the assignment step, where each sample is assigned to its
closest centroid by comparing squared Euclidean distances
(Lines 6–8); and 3) the update step, where each centroid
is recalculated to be the element-wise mean of the samples
assigned to it (Line 10). The algorithm runs for a fixed number
of iterations, or until the centroids become stable.

The detailed flow of km within two epochs is shown in
Fig. 1. Based on the definition of the epoch, for km, because
of its full batch iteration mode, an epoch is equivalent to an
iteration. It’s obvious in Fig. 1 that km accumulates samples
into S⃗ and v⃗ within each epoch (Lines 7 and 8) and cleans
up S⃗ and v⃗ at the end of the epoch (Lines 11 and 12) after
calculating new centroids (Line 10). As a result, only each
sample’s most recent assignment is accumulated into S⃗ and v⃗

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: STALENESS-REDUCTION MINI-BATCH K -MEANS 3

Fig. 1. Detailed flow of km, mbatch, and srmbatch within two sequential epochs. (acc. = accumulate samples, asgn. = assignment, upd. = update.)

and then contributes to the centroids at the end of this epoch,
which introduces no staleness into the centroids.

The advantage of km is that km is an efficient clustering
algorithm that can converge to a low loss because of its full-
batch iteration mode with zero centroid staleness.

The disadvantage is that km inevitably takes either a long
time or a large number of computational resources to calculate
distances between a full batch of samples and all centroids
before updating centroids once. This issue becomes worse
when dealing with large datasets.

B. Mini-Batch K -Means

The mbatch km algorithm applies mbatch optimization to
the standard km clustering [4]. Essentially, instead of updating
centroids once within each epoch, mbatch updates centroids
for each mbatch so it can update centroids multiple times
within one epoch.

Algorithm 2 illustrates the flow of the mbatch algorithm.
The main differences between mbatch and km are as follows.
Before each iteration, a certain number of samples are ran-
domly picked to form a mbatch (Line 5). Then, it calculates
distances between samples in the mbatch with all centroids and
assigns each sample to its closest centroid (Lines 7–9). After
all samples in the mbatch have been assigned, each cluster
centroid is updated by the mean of all the samples assigned
to it, namely, all the samples accumulated in S⃗[j] (j is the
corresponding index of each centroid) (Line 11).

As Fig. 1 shows, the S⃗ and v⃗ keep accumulating samples
during all iterations in mbatch (Lines 7–9). Because mbatch
uses random sampling with replacement, the whole dataset is
mathematically expected to be traversed once in each epoch,
namely, N/B iterations, according to the definition of the
epoch. Since S⃗ and v⃗ are never cleaned up between iterations
or epochs, assignment results from previous epochs are always
kept in S⃗ and v⃗, which introduces staleness into centroids.

The advantage of mbatch is that mbatch optimization
leads to a faster convergence rate. The mbatch of samples
are picked randomly with replacement from the dataset, so
they are supposed to have the same statistic characteristics as
the full batch, indicating that mbatch will converge to some

Algorithm 2 Mini-Batch K-Means
Input : K : number of clusters,

X⃗ : dataset,
N : number of data points in dataset X⃗ ,
B: mini-batch size,
T : number of iterations.

Output: C⃗ : cluster centroid set.
/* 1, Initialization Step */

1 C⃗ ← K samples picked randomly from X⃗
2 v⃗← 0 /* Iterative counter */
3 S⃗← 0 /* Iterative sum */
4 for i = 0 to T − 1 do

/* 2, Assignment Step */
5 M⃗ ← B samples picked randomly from X⃗
6 for j = 0 to B − 1 do

/* Function f for the closest
centroid */

7 c← f (C⃗, M⃗[j])
/* Update iterative counter */

8 v⃗[c] ← v⃗[c] + 1
/* Update iterative sum */

9 S⃗[c] ← S⃗[c] + M⃗[j]

/* 3, Update Step */
10 for j = 0 to K − 1 do

/* Update centroids */
11 C⃗[j] ← S⃗[j]/v⃗[j]

extent. The distance calculations associated with a mbatch are
significantly fewer than that with a full batch, so mbatch enjoys
a faster convergence rate.

The disadvantage of mbatch is that mbatch can converge to
a lower quality clustering solution, because mbatch uses each
data point’s multiple assignment results, including the most
recent one and the stale ones, to update centroids. Intuitively,
stale ones may not be the same as the most recent one but all
of them are kept in sum S⃗ and counter v⃗ (Lines 7–9) that are
used to update centroids for the next iteration (Line 11), so it

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

introduces centroid staleness. More mathematical analysis is
in Section III-C.

III. STALENESS-REDUCTION MINI-BATCH K -MEANS

In this section, we first propose the k-means srmbatch
algorithm, which aims at achieving both low computational
costs and high clustering quality. The key idea of srmbatch is
to mainly follow mbatch to update centroids with a mbatch of
samples while constraining the staleness of centroids to stay
low; that is, there are no more than 2 most recent assignments
of each data point in the dataset contribute to centroids. Then,
we present the concrete algorithm and related analysis.

A. srmbatch Algorithm

Algorithm 3 illustrates the flow of srmbatch, which is
similar to mbatch regarding more frequent centroid updating
than km, and which is similar to km regarding the low
staleness, as shown in Fig. 1. In the following, we present the
detailed flow of srmbatch, including three steps: initialization,
mbatch-like, and km-like.

1) Step 1 (Initialization Step): The dataset X⃗ is shuffled
and partitioned to Nb mbatchs (Lines 1 and 2), all of which
will be sequentially used for centroid updating.

Each iteration processes a mbatch, with Nb iterations per
epoch. According to the definition of epoch in Section II, in
srmbatch, an epoch equals exactly Nb iterations because the
dataset is traversed once during Nb iterations. The motivation
behind our sampling approach is to guarantee that each data
point in a dataset is only assigned once in srmbatch in each
epoch, which is consistent with km that scans the entire dataset
for each iteration/epoch. The cluster centroid set C⃗ is chosen
to be K samples picked randomly from X⃗ (Line 3).

2) Step 2 (mbatch-Like Step): The srmbatch algorithm is
iteratively evaluated in E epochs (Line 8). In each epoch, Nb

mbatchs are scanned by srmbatch, one mbatch per iteration
(Line 9). In each mbatch of B samples, srmbatch processes the
kth sample as follows. First, we determine the closest cluster,
whose index is c, by comparing distances between the sample
and K cluster centroids C⃗ (Line 11). Second, we update the
cth elements of iterative counter v⃗ and sum S⃗ using the kth
sample M⃗ j [k] (Line 12). Third, we update the cth elements of
per-epoch counter v⃗ p and sum S⃗ p using the kth sample M⃗ j [k]
(Line 13). After processing a mbatch, srmbatch recalculates
C⃗ to be S⃗ divided by v⃗ element-wise (Lines 14 and 15). The
updated C⃗ would be immediately used in the next mbatch,
similar to mbatch.

3) Step 3 (km-Like Step): At the end of an epoch, srmbatch
updates cluster centroids C⃗ to constrain the centroid staleness
(Lines 16–19). Particularly, C⃗ is recalculated to be S⃗ p divided
by v⃗ p in an element-wise approach (Line 17), and S⃗ and v⃗ are
set to α ∗ e multiplied by S⃗ p and v⃗ p, respectively (Line 18).
It guarantees that the new centroid set for the next epoch only
contains the most recent assignments from the current epoch
and that the centroid set during the next epoch contains no
more than two most recent assignments of each data point.
Finally, S⃗ p and v⃗ p are set to 0 for the next epoch (Line 19).
This centroid update is the reason why, at any time, there are

Algorithm 3 Staleness-Reduction Mini-Batch
K -Means
Input : K : number of clusters,
B: mini-batch size,
X⃗ : dataset,
N : number of data points in dataset X⃗ ,
E : number of epochs,
α: hyperparameter.
Output: C⃗ : cluster centroid set.
/* 1, Initialization Step */

1 Nb ← N/B /* number of mini-batches in
a dataset */

2 M⃗ i (i = 0, 1, 2, . . . , Nb − 1)← Shuffle and partition X⃗
to Nb mini-batches

3 C⃗ ← K samples picked randomly from X⃗
4 v⃗← 0 /* Iterative counter */
5 S⃗← 0 /* Iterative sum */
6 v⃗p ← 0 /* Per-epoch counter for current

epoch */
7 S⃗p ← 0 /* Per-epoch accumulator for

current epoch */
8 for e = 1 to E do

/* 2, mbatch-like Step */
9 for j = 0 to Nb − 1 do

/* 1) Assignment Step */
10 for k = 0 to B − 1 do

/* Function f for the closest
centroid */

11 c← f (C⃗, M⃗ j [k])
/* Update iterative counter &

sum */
12 v⃗[c] ← v⃗[c] + 1, S⃗[c] ← S⃗[c] + M⃗ j [k]

/* Update per-epoch counter &
sum */

13 v⃗p[c] ← v⃗p[c] + 1, S⃗p[c] ← S⃗p[c] + M⃗ j [k]

/* 2) Update Step */
14 for k = 0 to K − 1 do
15 C⃗[k] ← S⃗[k]/v⃗[k] /* Update

centroids */

/* 3, km-like Step (Re-update Step)

*/
16 for j = 0 to K − 1 do
17 C⃗[j] ← S⃗p[j]/v⃗p[j] /* Update

centroids */
/* Re-update iterative counters

& sums */
18 v⃗[j] ← α ∗ e ∗ v⃗p[j], S⃗[j] ← α ∗ e ∗ S⃗ p[j]

/* Re-update per-epoch counters
& sums */

19 v⃗p[j] ← 0, S⃗p[j] ← 0

at most two assignment result of each data point in the dataset
that contribute to the centroid set, hence reducing staleness,
as specified in the introductory summary of Section III.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: STALENESS-REDUCTION MINI-BATCH K -MEANS 5

TABLE I
COMPLEXITY OF COMPUTATIONAL OPERATIONS IN SRMBATCH

(ALGORITHM 3) WITHIN ONE EPOCH. (D IS THE NUMBER
OF DIMENSIONS OF SAMPLES)

The coefficients α and e (Line 18) are used to tune the
weight of S⃗ p and v⃗ p. The intuition behind introducing e as
a coefficient is that the cluster centroids in srmbatch should
tend to become stabler when e increases like mbatch in which
S⃗ and v⃗ keep accumulating samples to guarantee convergence
stability. Hyperparameter α is introduced to manually control
the proportion of assignment results from the last epoch in
the current epoch’s S⃗, v⃗, and C⃗ . A larger α means more
contribution that the last epoch makes to the centroid set in
the current epoch.

4) Comparison to mbatch: As illustrated in Fig. 1 and
Algorithm 3, the flows of srmbatch and mbatch are similar to
each other. Their differences are shown as follows.

First, they have different sampling mechanisms. srmbatch
shuffles the dataset at the beginning and samples data points
sequentially to build a mbatch, while mbatch samples data
points randomly from the dataset to build a mbatch.

Second, they have different centroid update mechanisms.
Compared to mbatch that only updates centroids at the end
of each iteration, srmbatch adds one more step, i.e., km-like
step, that uses the most recent assignments at the end of current
epoch to update cluster centroids before the next epoch begins.
As such, the next epoch can have low centroid staleness as km
because km-like step deprecates stale assignment results.

B. Theoretical Analysis of Computational Costs

We mainly analyze the computational costs of km, mbatch,
and srmbatch on distance calculation for centroid update in
one iteration. It’s worth noting that for all three algorithms, not
only distance calculation but also other operations like centroid
updating, the iterative counter(v⃗) updating, the iterative sum(S⃗)
updating, and so on cause computational costs. Table I shows
the complexity of all computational operations in srmbatch
within one epoch. We can find that compared with the cost
of distance calculation, the cost of other operations can be

ignored. For km and mbatch, operations beyond distance
calculation are less so can be ignored as well.

For km, it always updates centroids with a full batch of
samples, so it calculates distances N ∗ K times to update
centroids once. For mbatch and srmbatch, we compare them
under the same mbatch size. For mbatch, it always updates
centroids with a mbatch of samples so it calculates distances
B ∗ K times to update centroids once. For srmbatch, it
calculates distances B ∗ K times to update centroids once as
well because it uses a similar mbatch strategy. When B is far
smaller than N , (1) always holds which means mbatch and
srmbatch take far less computational costs to update centroids
once than km does

K ∗ B ≪ N ∗ B. (1)

C. Theoretical Analysis of Clustering Quality

In this section, our goal is to theoretically compare the
centroid staleness of km, mbatch, and srmbatch, so as to
verify srmbatch’s efficiency in reducing centroid staleness
compared with mbatch. In the following, we first give the
formal definition of centroid staleness, followed by the theo-
retical analysis, second compare the centroid staleness of km,
mbatch, and srmbatch, third analyze the relation between the
centroid staleness and the clustering quality, and finally, make
discussions about the hyperparameter α. for srmbatch

1) Definition of Centroid Staleness:
Definition 1 (Epoch Gap): The epoch gap of an assignment

result is defined as the number of epochs between where the
assignment result is generated and where it contributes to the
centroid set. G i, j means the epoch gap of an assignment result
that is generated in one iteration of the i th epoch and that
contributes to the centroid set in one iteration of the j th epoch
as shown in the following equation:

G i, j = j − i. (2)

Given that assignment results from the same i th epoch have
the same epoch gap j− i when they contribute to the centroid
set in the j th epoch, Wi, j is the sum of epoch gaps of all
the Ni, j assignment results that are from the i th epoch and
that contribute to centroid set in the j th epoch, as shown in
(3). Ni, j has different forms for different algorithms and we
analyze it in Section III-C2

Wi, j =

Ni, j∑
j=1

G i, j =

Ni, j∑
j=1

(j − i) = Ni, j (j − i). (3)

Definition 2 (Centroid Staleness): Centroid staleness is a
scalar and is defined to be the average epoch gap that the
assignment results contributing to the centroid set in a certain
iteration. The centroid set calculated out in each iteration has
its own centroid staleness. L x,y means the centroid staleness
that the centroid set from the x th iteration of the yth epoch
has, as shown in (4). The reason why i increases from 1 to
j−1| j=y instead of to j | j=y is that assignment results from the
yth epoch do not introduce centroid staleness to the centroid

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

set in the same yth epoch (G i, j |i= j=y = 0, Wi, j |i= j=y = 0)

L x,y =

i= j−1∑
i=1

Pi, j (x)Wi, j

∣∣∣∣
j=y

. (4)

Equation (4), Pi, j (x) is the proportion that each assignment
result from the i th epoch takes among all assignment results
that contribute to the centroid set in the x th iteration of the j th
epoch. It’s a function of x and has different forms for different
algorithms. We analyze Pi, j (x) in Section III-C2. The reason
why we do not introduce an independent weight coefficient
for each assignment result from the i th epoch separately is
that for all three algorithms, assignment results from the same
epoch have the same proportion.

2) Comparison of Le for km, mbatch, and srmbatch:
a) Evaluating L x,y for km: The km algorithm performs

centroid update with a full batch of samples (N = B) in
each epoch, indicating that each data point is sampled exactly
once to update S⃗ and v⃗ in each epoch (Lines 7 and 8 in
Algorithm 1). Moreover, S⃗ and v⃗ are cleaned at the end of
each epoch (Lines 11 and 12), which means old assignment
results from the first, second, (j − 1)th epochs won’t be kept
in S⃗ and v⃗ in the j th epoch. So there exists in the following
equation for Pi, j (x):

Pi, j (x) =

= 0, i ≤ j − 1

=
1
N

, i = j .
(5)

For km, Ni, j = N (i ≤ j) according to the definition of
epoch. Substituting (5) into (4), we can achieve L x,y in the
following equation:

L x,y = 0. (6)

b) Evaluating L x,y for mbatch: The mbatch algorithm
performs the centroid update at the end of each iteration
with a mbatch of samples which are randomly picked with
replacement from the entire dataset. According to the defini-
tion of the epoch, in mbatch, each data point is mathematically
expected to be sampled once to update S⃗ and v⃗ within an epoch
(Lines 8 and 9 in Algorithm 2). Pi, j (x) is as shown in (7). B is
the mbatch size, (j−1)N is the number of assignment results
from the first ∼ (j − 1)th epochs, and x B is the number
of assignment results from the first ∼ x th iterations in the
j th epoch

Pi, j (x) =
1

(j − 1)N + x B
. (7)

For mbatch, Ni, j = N (i ≤ j) as well according to the
definition of the epoch. Therefore, there exists in the following
equation for L x,y :

L x,y =
N

(y − 1)N + x B
y(y − 1)

2

≥
(y − 1)N

(y − 1)N + x B
, when y ≥ 2. (8)

c) Evaluating L x,y for srmbatch: The srmbatch algo-
rithm recalculates the centroids to be S⃗ p divided by v⃗ p in
an element-wise manner and reupdates S⃗ and v⃗ after each
epoch ends (Lines 17 and 18 in Algorithm 3), so that in
each iteration, srmbatch always update the centroid set with
assignment results from no more than two latest epochs instead
of from all previous epochs like mbatch. Pi, j (x) for srmbatch
satisfies as follows:

Pi, j (x) =

= 0, i ≤ j − 2

=
1

α(j − 1)N + x B
, i = j − 1 or j .

(9)

Equation (9), α(j − 1)N is the value of Ni, j |i= j−1, namely,
the number of assignment results from the (j − 1)th epoch.
The reason why Ni, j |i= j−1 doesn’t equal N is that srmbatch
multiplies the assignment results from the (j − 1)th epoch in
the km-like step at the end of the (j − 1)th epoch with the
coefficient2 α ∗ (j − 1). So L x,y satisfies as follows:

L x,y = Pi, j (x)Wi, j

∣∣∣∣
i= j−1, j=y

= Pi, j (x)Ni, j (j − i)
∣∣∣∣
i= j−1, j=y

=
α(y − 1)N

α(y − 1)N + x B

≤
(y − 1)N

(y − 1)N + x B
, when 0 ≤ α ≤ 1. (10)

d) srmbatch versus mbatch: Intuitively, srmbatch has
lower L x,y than mbatch because as Fig. 1 shows, srmbatch
deprecates assignment results with high epoch gap in S⃗ and v⃗

by km-like step at the end of each epoch, while mbatch never
cleans up S⃗ and v⃗, namely, never drops assignment results
with high epoch gap for centroid update. Also, from (8) and
(10), we can find that if both algorithms share the same B,
L x,y for srmbatch will always be less than or equal to L x,y

for mbatch when 0 ≤ α ≤ 1 and y ≥ 2 hold. In practice, the
loss of both mbatch and srmbatch seldom converges within
two epochs. So for most cases, srmbatch has lower L x,y with
0 ≤ α ≤ 1 than mbatch does.

e) srmbatch versus km: We can find that when B ̸= N
for srmbatch, srmbatch and km do not share the same number
of iterations within one epoch, so L x,y for srmbatch cannot be
compared with L x,y directly with one-to-one correspondence
about x, y. However, we can find that L x,y for km is always
zero, while L x,y for srmbatch can be close to zero as well when
α ≈ 0 based on (10). km reaches a high clustering quality
because L x,y = 0 which means there is no stale assignment
result impacting its clustering quality. So we consider that
srmbatch with α ≈ 0, namely, L x,y ≈ 0, can reach a
similarly high clustering quality as well because nearly all
stale assignment results are deprecated.

3) Relation Between L x,y and Loss: We seek lower L x,y

for lower loss. To better analyze the relation between L x,y

and the loss, we define Rx,y as a set of assignment results
that contribute to the centroid set in the x th iteration of the

2Both (j − 1) here and e in Line 18, Algorithm 3 refer to the same index
of the epoch.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: STALENESS-REDUCTION MINI-BATCH K -MEANS 7

yth epoch, and dismantle Rx,y as a series of assignment result
sets {R(i)

x,y |1 ≤ i ≤ y}. R(i)
x,y contains assignment results that

are generated in the i th epoch and that contribute to the
centroid set in the x th iteration of the yth epoch. Because
of the definition of epoch, R(i)

x,y(1 ≤ i ≤ y − 1) contains
one assignment result of each data point in the dataset. Since
all three algorithms iteratively converge because of the nature
of km algorithms [5], R(i1)

x,y is generated based on a centroid
set with higher loss than R(i2)

x,y when i1 < i2, namely, when
R(i1)

x,y is staler than R(i2)
x,y . In other words, R(i1)

x,y deviates from
the accurate assignment results more than R(i2)

x,y when i1 < i2.
Besides, when the gap between i1 and i2 increases, the gap
between the losses of the corresponding centroid sets increases
as well. As a result, for Rx,y , each R(i)

x,y causes a centroid set
which is calculated out in the x th iteration of the yth epoch
shifts from the one with lower loss to the one with higher
loss, and the smaller the i is, the severer the centroid shift
that R(i)

x,y causes is. We use epoch gap to measure how stale
an assignment result is when it contributes to the centroid set,
and we assume that the effect of stale assignment results on
loss is linear,3 then the centroid staleness L x,y , namely, the
average epoch gap for assignment results that contribute to
the centroid set in the x th iteration of the yth epoch, can mea-
sure how severe the overall loss increase caused by centroid
shift is.

D. Discussion on the Case α = 0

From (9), we can find that if α = 0, L x,y reaches the lowest
value in srmbatch, meaning that most centroid staleness is
removed. It seems tempting and seemingly will lead to the
best convergence rate and quality. However, compared with
α ̸= 0, α = 0 leads to a more severe sampling distortion
problem with which the mbatch optimization comes along.

In particular, S⃗ and v⃗ are cleaned at the end of each epoch.
So if α = 0, a mbatch of samples that are accumulated in S⃗ and
v⃗ in the first iteration of the next epoch will completely decide
centroids by S⃗/v⃗. However, the statistical characteristics of a
mbatch of samples usually can not represent the whole dataset.
So a new centroid set calculated from just a mbatch of samples
may not be able to reduce loss. Not only the first iteration
of each epoch has this problem, but also the second, the
third, . . . until S⃗ and v⃗ have accumulated a certain amount of
samples. This process repeats at the beginning of each epoch,
which may affect the convergence rate and quality.

On the contrary, none-zero α can ease this problem. Accord-
ing to Line 18, Algorithm 3, if α ̸= 0, the weight of assign-
ment results from the last epoch increases when e increases
no matter how tiny the α is. It makes sense because the cluster
centroids in srmbatch should tend to become stabler when e
increases like mbatch in which S⃗ and v⃗ keep accumulating
samples to guarantee convergence stability.

It’s hard to judge whether staleness or sampling distortion
has a more severe influence on convergence rate in real imple-
mentation for mbatch iteration mode, so srmbatch introduces
one tuning knob α for the user.

3we take a more complex model like a binomial model or an exponential
model as future work.

IV. EXPERIMENT

In this section, we compare km, mbatch, and srmbatch
on three aspects–the hardware efficiency (Section IV-B), the
statistical efficiency (Section IV-C), and the end-to-end com-
parison (Section IV-D). Experiments on the first aspect show
that srmbatch achieves almost the same massive degree of
parallelism compared with mbatch, and experiments on the
other two aspects show that srmbatch achieves a high cluster-
ing quality like km and low computational costs like mbatch.
We also explore the effect of hyperparameter α on srmbatch
(Section IV-E) and give guidance on how to tune α based on
experiments. We finally extend our algorithm with k means++
(Section IV-F) to show that our algorithm still works well
when it’s combined with the other orthogonal optimization
for km.

A. Experimental Setup
1) Hardware Platform: We run our CPU code on a 10-core

Intel CPU i9-10900X @ 3.70 GHz, with 94 GB/s memory
bandwidth and a 19.25 MB L3 cache. The SIMD4 code
leverages the AVX-512 instruction set. We run the GPU code
on an NVIDIA Tesla V100 GPU @1.245 GHz with 5120
compute unified device architecture (CUDA) cores and 900
GB/s memory bandwidth.

2) Dataset: We run our experiments with four real-world
datasets: Sift [7], Gist [7], Poker [8], and Mnist8m [9], as
shown in Table II. These datasets cover a wide range of
data points and are representative of clustering tasks. All four
datasets are normalized in each dimension by the min-max
normalization method.

3) Centroid Initialization: Since the km algorithm itself
is sensitive to the initial centroids, for the sake of fairness,
we use the same initial centroids in all the experiments for
each dataset. The initial centroids are chosen to be K samples
randomly picked from the dataset as the related works ([4],
[10], [11], [12]) do.

4) Comparison Methodology: To demonstrate the effi-
ciency of srmbatch, we compare the hardware efficiency
(Section IV-B), statistical efficiency (Section IV-C), and end-
to-end efficiency (Section IV-D) of srmbatch with that of
mbatch and km.

B. Hardware Efficiency: Time for Each Epoch
In this section, we demonstrate the hardware efficiency of

srmbatch by comparing with mbatch5 and km on the Sift
dataset with K = 32, in terms of the time for an epoch with
varying mbatch size. For experiments on CPUs, we implement

4SIMD stands for “Single Instruction, Multiple Data, and refers to function-
ality that a lot of computer hardware has for operating on multiple numbers
at once [6].

5We introduce two mbatch variants. The first one, labeled mbatch (rand),
is the standard implementation of mbatch. It randomly picks K samples with
replacement for each mbatch, as shown in Algorithm 2. The other one, labeled
mbatch (seq), is the variant that sequentially chooses K samples for each
mbatch. We introduce mbatch (seq) for two reasons. First, it’s used to show
that mbatch (rand) suffers from random memory access and random number
generation. Second, the only difference between mbatch (seq) and srmbatch is
that srmbatch has a staleness reduction part so the comparison between them
can show the overhead of the staleness reduction part of srmbatch.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Comparison of hardware efficiency: time per epoch. (a) CPU. (b) GPU.

TABLE II
EVALUATED DATASETS

all algorithms in three different configurations which are about
the parallelism potentials of the system. The first one only uses
O3 compiler option6; the second uses O3 and SIMD (AVX-
512)7 for 32-dimension parallelism; the third uses O3, SIMD
(AVX-512) for 32-dimension parallelism, and multithread8

(16-thread) technique for 16-sample parallelism.
For experiments on GPUs, we implement all algorithms

with CUDA. The most time-consuming kernel for all algo-
rithms is to calculate the distance between each sample in a
mini/full-batch and each centroid in the centroid set. To fully
utilize GPU computing power, this kernel includes 256 thread
blocks with 32 warps per block (32 threads per warp). Every
thread block calculates distances between one sample and
32 centroids concurrently.9 Every warp in a thread block
calculates the distance between one sample and one centroid.
Every thread in a warp calculates the squared distance between
1-D of a sample and the same dimension of a centroid.10

Time per epoch means how long for a certain algorithm
to run over an epoch, rather than over the whole clustering
process. Typically, we run 50 epochs and then get the average
time for each epoch. Fig. 2 compares the hardware efficiency
of srmbatch, mbatch, and km. There is a gap (600–2500 ms)
for the vertical axis in Fig. 2. We hide 600–2500 ms of the
vertical axis so that all results are shown on an appropriate
scale. Based on the experiments, we have three observations:

6O3 is the highest optimization level of the GCC compiler. It includes
revising the order of instructions, incomprehensive data parallelism, and so
on. It is implemented totally by the compiler, so it is friendly for users while
its optimization is unelaborate.

7SIMD is short for “single instruction, multiple data.” It’s widely used for
data parallelism and it requires developers to use the specific instruction set
like AVX-512.

8Multithread is another widely used technique for not only data parallelism
but also task parallelism. It requires developers to use a specific library like
pthreads library.

9We use the for-loop to handle the case that the number of centroids is
more than 32 for the following experiments.

10The for-loop is used to handle the case that the number of dimensions is
more than 32 for the following experiments.

First, srmbatch takes roughly the same time per epoch
as mbatch (seq) and km regardless of AVX-512/16-thread
code on the CPUs or code on the GPUs, indicating that
srmbatch exposes massive calculation parallelism and that the
overhead of the staleness reduction part of srmbatch is trivial.
To be specific, for one epoch, the staleness reduction part
(Line 13, 17–19, Algorithm 3) needs around 1.3E8 floating
point operations (FLOPs) and others need around 1.2E10
FLOPs under the given experimental situations. What’s more,
the acceleration effect of parallelism is almost stable. To be
specific, the standard deviation around the mean of time per
epoch is no more than 6 ms for CPU-based experiments and
no more than 50 us for GPU-based experiments.

Second, mbatch (seq) takes less time per epoch than mbatch
(rand) on both CPUs and GPUs, indicating the random sam-
pling strategy is more memory-unfriendly. The underlying
reason is that random sampling leads to random memory
access, which causes memory bandwidth unutilized and thus
increases the time per epoch. Besides, as Fig. 2(a) shows,
“AVX-512” achieves high calculation parallelism, while only
slightly relieving the low bandwidth utilization issue caused
by random sampling. We can learn it from two phenomena.
First, mbatch(rand)_AVX-512 needs obviously lower time per
epoch than that of mbatch(rand), when other configurations
keep. Second, the time difference between mbatch(rand)_AVX-
512 and mbatch(seq)_AVX-512 is just lower than the time
difference between mbatch(rand) and mbatch(seq) a little.
What’s more, the multithread tech on CPUs and the multicore
tech on GPUs are powerful in increasing both calculation
parallelism and random access bandwidth. As a result, we
can see that the time difference between mbatch(rand) and
mbatch(seq) decreases a lot when multithread/core tech is used
and other configurations keep.

Third, as Fig. 2(b) shows, too small mbatch size like 1024
hurts the performance of srmbatch and mbatch on the GPUs
compared with km’s performance. It is because (1) a small
mbatch size does not expose enough parallelism to saturate
thousands of cores on the GPU, while km allows GPUs to
fully leverage their high parallelism, and (2) a small mbatch
size leads to multiple times of centroid update per epoch, while
km only updates centroids once per epoch. Leveraging all
three optimization methods on CPUs leads to high calculation
parallelism that can decrease the time for distance calculation
a lot, so the time for centroid update cannot be ignored, as
shown in Fig. 2(a).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: STALENESS-REDUCTION MINI-BATCH K -MEANS 9

Fig. 3. Comparison of statistical efficiency: loss versus epoch. (a) K = 32. (b) K = 64. (c) K = 128.

C. Statistical Efficiency: Loss versus Epoch

In this section, we examine the statistical efficiency of
srmbatch and compare it with km and mbatch. Fig. 3 illus-
trates the comparison of all four datasets with K ∈ {32,
64, 128}, in terms of loss (within-cluster sum of square
error) versus epoch.11 We take the experimental results
with K ∈ {32, 64, 128} as representative results for the
small/medium/large centroid set, and the other number of
clusters leads to similar observations though we do not show
them. For each dataset, we choose the most suitable mbatch
size from {1024, 4096, 16 384, 65 536} for mbatch to reach the
best clustering solution, while the km algorithm does not have
a hyperparameter to tune. For srmbatch, we let the mbatch size
of srmbatch be equal to the one that works best for mbatch
on each dataset, and set alpha = 0.01 of which the efficiency
is proved in experiments in Section IV-E.

We make the following observations. First, srmbatch always
reaches an excellent clustering solution, in terms of loss,
quite similar to a solution that km can achieve within the
error range (−0.15%, 0.18%), indicating that srmbatch has
high clustering quality like km. By the way, it should be
noted that the km algorithm gives not a global solution but

11Regarding an epoch, either km or srmbatch processes each data point in
the dataset exactly once, while mbatch processes N/B mbatchs of samples,
whose expectation is equal to that of the entire dataset.

a local one and there also exists an error in the floating-point
calculation so srmbatch may sometimes achieve slightly lower
loss than km. Second, srmbatch needs significantly fewer
epochs to converge, compared with both km and mbatch. The
comparison between srmbatch and km verifies that srmbatch
has low computational costs for each time of centroid update
because centroids always update with a mbatch of samples like
mbatch instead of the full-batch samples like km. The compar-
ison between srmbatch and mbatch indicates the importance
of eliminating the stale assignment results from centroids.
Although both srmbatch and mbatch use mbatch to update
centroids, srmbatch has lower centroid staleness which let it
faster reach a low loss.

D. End-to-End Comparison: Loss versus Time

In this section, we validate that srmbatch outperforms
km and mbatch in terms of end-to-end performance on the
GPUs for high experiment efficiency with large datasets. The
configurations are the same as those in Section IV-C. Fig. 4
illustrates the training loss that varies with the elapsed time for
all three algorithms. We observe that srmbatch can converge
significantly faster than mbatch, mainly because srmbatch
needs a fewer number of epochs to converge to the same
clustering solution. Compared with mbatch, srmbatch can con-
verge 40×–130× faster, when reaching the same target loss.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. End-to-end comparison: loss versus time. (a) K = 32. (b) K = 64. (c) K = 128.

Moreover, srmbatch can reach 0.2%–1.7% lower final loss than
that of mbatch.

E. Effect of Hyperparameter α

In this section, we examine the effect of hyperparame-
ter α on srmbatch’s convergence performance. We test the
statistical efficiency (loss versus epoch) of srmbatch on all
four datasets with the corresponding batch size chosen as
shown in Section IV-C. In each case, α traverses the set
{0, 0.01, 0.1, 1, 10, 100}. Fig. 5 illustrates the experimental
results, we have three observations.

First, the convergence rate of srmbatch increases while
α decreases, since smaller α truly reduces more centroid
staleness. Second, however, when α is equal to 0, the final
loss of srmbatch tends to increase obviously and sometimes
vibrates as well. It means that this configuration lowers the
convergence quality. The underlying reason is that even though
it eliminates most staleness, it suffers from a severe sampling
distortion problem. This problem is introduced by updating
new centroids from a mbatch, rather than a full batch, of
samples, as mentioned in Section III-D. Third, srmbatch’s
convergence rate with α > 1 is very close to the rate with
α = 1 and is apparently lower than the rate with 0 ≤ α < 1.

In Section III-C, we analyze that when y ≥ 2 and 0 ≤
α ≤ 1, srmbatch’s centroid staleness (L x,y) is always lower

than or equal to mbatch’s. From the results here, we can also
find that for srmbatch itself, 0 ≤ α < 1 works better than
α ≥ 1 in the sense of convergence rate because lower alpha
causes lower centroid staleness. So to achieve both the high
convergence quality and the high convergence rate, 0 < α < 1
is the recommended hyperparameter range. What’s more, from
the experiment results, we can observe that α = 0.01 usually
leads to both a high convergence rate and high convergence
quality. Considering the cost of hyperparameter tuning and the
algorithm performance, we just recommend setting α = 0.01
to achieve good clustering solutions.

F. Extension: Staleness-Reduction km++

We validate that srmbatch can be used together with other
orthogonal optimization methods like km++ [13], where
km++ optimizes the centroid initialization process, based on
the idea that the distance between the initial centroids should
be as far as possible and it still shows a great improvement in
performance compared with km and mbatch.

Fig. 6 shows the experimental results on four datasets with
K = 32 and we can have a similar conclusion on other values
of K . We observe that srmbatch with km++ still converges the
fastest among all three algorithms and its final loss is similar
to the loss of km.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: STALENESS-REDUCTION MINI-BATCH K -MEANS 11

Fig. 5. Effect of Hyperparameter α. (a) K = 32. (b) K = 64. (c) K = 128.

Fig. 6. Performance with km++.

V. RELATED WORK

There are still lots of other studies improving the conver-
gence performance or computation efficiency of km.

A. Distance Calculation Pruning Techniques

Many existing acceleration methods focus on reduc-
ing distance computations, including KD-tree-based and

triangle-inequality-based approaches. KD-tree-based optimiza-
tions [14], [15], [16] enable a fast closest cluster search by
storing points in special data structures. Triangle-inequality-
based optimizations [17], [18], [19], [20], [21], [22], [23]
utilizes cheaper bound computations to avoid calculating
expensive certain distances. These techniques are orthogonal
to our proposed algorithm.

B. Better Initial Centroids

The km algorithm is highly sensitive to the initial cen-
troids [24], thus a lot of research has been done on the topic
of initialization strategies. For example, km++ [13] optimizes
the way of centroid initialization based on the idea that the
distance between the initial centroids should be as far as
possible. Moreover, different variants of km++ have been
proposed [25], [26]. However, these methods do not change
the process of computing distances and updating centroids,
thus can also be easily integrated into our algorithm.

C. Approximated Methods

Approximated methods improve computation efficiency at
the cost of a slight loss of accuracy, and thus are in
high demand considering the large-scale problems. Besides
mbatch [4], there are other approximated methods, including
approximated search [27], hierarchical search [28], and subset-
based methods [29], [30]. Recent advances in approximated

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

methods include nested mbatch km [10], which accelerates
mbatch via the distance pruning technique of [17]. However,
this algorithm is quite more complex and is harder to imple-
ment, compared with mbatch and our srmbatch. Allowing
simple implementation is an outstanding advantage on modern
hardware devices like GPUs and field-programmable gate
arrays (FPGAs) that expose massive parallelism.

D. Product Quantization (PQ)

PQ encodes vectors into several disjointed sub-vectors [7],
which is a common technique for handling large-scale data.
For example, PQ km [11] uses PQ codes to realize fast and
memory-efficient km clustering. It achieves better accuracy
than B km [12], which converts vectors into binary codes [31].

VI. CONCLUSION

In this article, we propose the k-means srmbatch to achieve
both a low computation cost and a high clustering quality.
To our knowledge, we’re the first to analyze the centroid stal-
eness of the mbatch k-means (mbatch) algorithm and propose
srmbatch to improve it. Experiments verify the efficiency of
srmbatch on increasing convergence rate and converging to a
better clustering result while still keeping hardware efficiency
on modern CPUs and GPUs, compared with mbatch. We take a
more complex model (e.g., a binomial model or an exponential
model) about the effect of stale assignment results on loss
as our main future work. Besides, we also believe it is
also interesting to modify the form of srmbatch to support
streaming data. What’s more, we consider that accelerating
srmbatch on FPGAs [32] is worth a try as well because of its
simple and hardware-friendly workflow.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their detailed feedback.

REFERENCES

[1] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image segmentation
using K-means clustering algorithm and subtractive clustering algo-
rithm,” Proc. Comput. Sci., vol. 54, pp. 764–771, 2015.

[2] X. Jiang, C. Li, and J. Sun, “A modified K-means clustering for
mining of multimedia databases based on dimensionality reduction and
similarity measures,” Cluster Comput., vol. 21, no. 1, pp. 797–804,
Mar. 2018.

[3] V. Jain, Y. Sharma, A. Bhatia, and V. Arora, “Crime prediction using
K-means algorithm,” Global Res. Develop. J. Eng., vol. 2, no. 5,
pp. 206–209, 2017.

[4] D. Sculley, “Web-scale K-means clustering,” in Proc. 19th Int. Conf.
World Wide Web, Apr. 2010, pp. 1–2.

[5] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A generalized
convergence theorem and characterization of local optimality,” IEEE
Trans. Pattern Anal. Mach. Intell., vols. PAMI–6, no. 1, pp. 81–87,
Jan. 1984.

[6] H. Wilson. (Jul. 10, 2015). What is SIMD? [Online]. Available:
https://huonw.github.io/blog/2015/07/what-is-simd/

[7] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[8] F. Cattral and R. Oppacher, “Poker hand,” UCI Mach. Learn. Repository,
MIT Press, Cambridge, MA, USA, 2007.

[9] G. Loosli, S. Canu, and L. Bottou, “Training invariant support
vector machines using selective sampling,” in Large Scale Kernel
Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds.
Cambridge, MA, USA: MIT Press, 2007, pp. 301–320. [Online]. Avail-
able: http://leon.bottou.org/papers/loosli-canu-bottou-2006

[10] J. Newling and F. Fleuret, “Nested mini-batch K-means,” in Proc. NIPS,
2016, pp. 1–9.

[11] Y. Matsui, K. Ogaki, T. Yamasaki, and K. Aizawa, “PQK-means: Billion-
scale clustering for product-quantized codes,” in Proc. MM, 2017,
pp. 1725–1733.

[12] Y. Gong, M. Pawlowski, F. Yang, L. Brandy, L. Bourdev, and R. Fergus,
“Web scale photo hash clustering on a single machine,” in Proc. CVPR,
2015, pp. 19–27.

[13] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proc. 8th Annu. ACM-SIAM Symp. Discrete Algorithms,
Stanford, CA, USA, 2007, pp. 1027–1035.

[14] G. Di Fatta and D. Pettinger, “Dynamic load balancing in parallel KD-
tree K-means,” in Proc. 10th IEEE Int. Conf. Comput. Inf. Technol.,
Jul. 2010, pp. 2478–2485.

[15] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient K-means clustering algorithm: Analysis and
implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002.

[16] P. Sirait and A. M. Arymurthy, “Cluster centres determination based
on KD tree in K-means clustering for area change detection,” in
Proc. Int. Conf. Distrib. Frameworks Multimedia Appl., Aug. 2010,
pp. 1–7.

[17] C. Elkan, “Using the triangle inequality to accelerate k-means,” in Proc.
ICML, 2003, pp. 147–153.

[18] G. Hamerly, “Making K-means even faster,” in Proc. SIAM Int. Conf.
Data Mining, Apr. 2010, pp. 130–140.

[19] Y. Ding, Y. Zhao, X. Shen, M. Musuvathi, and T. Mytkowicz, “Yinyang
K-means: A drop-in replacement of the classic K-means with consistent
speedup,” in Proc. ICML, 2015, pp. 579–587.

[20] J. Drake and G. Hamerly, “Accelerated K -means with adaptive distance
bounds,” in Proc. NIPS, vol. 8, 2012, pp. 1–4.

[21] T. Bottesch, T. Bühler, and M. Kächele, “Speeding up K-means by
approximating Euclidean distances via block vectors,” in Proc. ICML,
2016, pp. 2578–2586.

[22] R. R. Curtin, “A dual-tree algorithm for fast K-means clustering with
large K,” in Proc. SIAM Int. Conf. Data Mining, 2017, pp. 300–308.

[23] G. Hamerly and J. Drake, “Accelerating lloyd’s algorithm for K-means
clustering,” in Partitional Clustering Algorithms. Cham, Switzerland:
Springer, 2015, pp. 41–78.

[24] J. M. Peña, J. A. Lozano, and P. Larrañaga, “An empirical comparison of
four initialization methods for the K-means algorithm,” Pattern Recognit.
Lett., vol. 20, no. 10, pp. 1027–1040, Oct. 1999.

[25] O. Bachem, M. Lucic, H. Hassani, and A. Krause, “Fast and prov-
ably good seedings for K-means,” in Proc. NIPS, vol. 29, 2016,
pp. 55–63.

[26] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable K-means++,” Proc. VLDB Endowment, vol. 5, no. 7,
pp. 622–633, 2012.

[27] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in Proc.
CVPR, 2007, pp. 1–8.

[28] D. Nistér and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2,
Jun. 2006, pp. 2161–2168.

[29] A. Broder, L. Garcia-Pueyo, V. Josifovski, S. Vassilvitskii, and
S. Venkatesan, “Scalable K-means by ranked retrieval,” in Proc. 7th
ACM Int. Conf. Web Search Data Mining, Feb. 2014, pp. 233–242.

[30] Y. Avrithis, Y. Kalantidis, E. Anagnostopoulos, and I. Z. Emiris, “Web-
scale image clustering revisited,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1502–1510.

[31] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916–2929, Dec. 2013.

[32] Z. He, Z. Wang, and G. Alonso, “BiS-KM: Enabling any-precision
K-means on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, Feb. 2020, pp. 233–243.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: STALENESS-REDUCTION MINI-BATCH K -MEANS 13

Xueying Zhu received the bachelor’s degree from
Zhejiang University, Hangzhou, China, in 2021,
where she is currently pursuing the Ph.D. degree.

Her current research interests include in-network
computation and SmartNIC.

Jie Sun received the bachelor’s degree from Zhe-
jiang University, Hangzhou, China, in 2021, where
he is currently pursuing the Ph.D. degree.

His current research interests include graph neural
network and machine learning systems.

Zhenhao He received the bachelor’s degree from
Tongji University, Shanghai, China, in 2016, and
the master’s degree from ETH Zurich, Zurich,
Switzerland, in 2018, where he is currently pursuing
the Ph.D. degree.

His research interests include heterogeneous com-
puting and distributed computing.

Jiantong Jiang received the master’s degree from
Northeastern University, Shenyang, China, in 2020.
She is currently pursuing the Ph.D. degree with
The University of Western Australia, Crawley,
Australia.

She was a Research Assistant at the School of Soft-
ware Engineering, Zhejiang University, Hangzhou,
China. Her current research interests include
high-performance computing and machine learning
systems.

Zeke Wang received the Ph.D. degree from Zhejiang
University, Hangzhou, China, in 2011.

He is a Research Professor at the Collab-
orative Innovation Center of Artificial Intelli-
gence, Department of Computer Science, Zhejiang
University, China. His current research interests
mainly focus on building machine learning systems
using heterogeneous devices, e.g., SmartNIC and
SmartSwitch.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Western Australia. Downloaded on October 20,2023 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

