
Parallel and Distributed Structured SVM Training
Jiantong Jiang , Zeyi Wen , Zeke Wang , Bingsheng He, and Jian Chen

Abstract—Structured Support Vector Machines (structured SVMs) are a fundamental machine learning algorithm, and have solid

theoretical foundation and high effectiveness in applications such as natural language parsing and computer vision. However, training

structured SVMs is very time-consuming, due to the large number of constraints and inferior convergence rates, especially for large

training data sets. The high cost of training structured SVMs has hindered its adoption to new applications. In this article, we aim to

improve the efficiency of structured SVMs by proposing a parallel and distributed solution (namely FastSSVM) for training structured

SVMs building on top of MPI and OpenMP. FastSSVM exploits a series of optimizations (e.g., optimizations on data storage and

synchronization) to efficiently use the resources of the nodes in a cluster and the cores of the nodes. Moreover, FastSSVM tackles the

large constraint set problem by batch processing and addresses the slow convergence challenge by adapting stop conditions based on

the improvement of each iteration. We theoretically prove that our solution is guaranteed to converge to a global optimum. A

comprehensive experimental study shows that FastSSVM can achieve at least four times speedup over the existing solutions, and in

some cases can achieve two to three orders of magnitude speedup.

Index Terms—Parallel and distributed training, structured machine learning, support vector machines

Ç

1 INTRODUCTION

ALTHOUGH deep learning, particularly Deep Neural Net-
work (DNN) based techniques, has been offering state-

of-the-art solutions for many problems [1], [2], [3], [4], DNN
based techniques have apparent deficiencies including the
need of huge amount of data and hyper-parameters. Even
worse, theoretical analysis of DNN based techniques is diffi-
cult due to too many factors with almost infinite number of
hyper-parameter configuration combinations. In compari-
son, structured Support Vector Machines (structured SVMs)
have excellent theoretical foundation [5], and they are much
simpler to use due to much fewer hyper-parameters to be
tuned. Structured SVMs have been providing an important
approach to deal with complex multi-dimensional struc-
tured prediction problems, which have shown high effec-
tiveness in structured prediction problems [6], [7]. In fact,
research work has been using structured SVMs to solve
their problems from natural language parsing [8], [9], com-
puter vision [10], [11], [12], [13] and biomedical engineer-
ing [14], [15], [16]. These problems cannot be solved by
ordinary SVMs which do not support structured outputs.

However, a key barrier that hinders the wider usage of
structured SVMs is its long training time especially for large
and complex problems. We have conducted experiments on
publicly available data sets with the existing implementa-

tions SVM-Struct from SVMlight [6]. The experimental
results shown in Fig. 1 indicate that the training of SVM-
Struct is indeed time-consuming (e.g., 10 hours of training
on the pendigits data set). By using our proposed techniques
in this work, the training time can be dramatically reduced
(e.g., the training only needs 4 minutes in pendigits).

While much research has been conducted on the acceler-
ation of ordinary SVMs (e.g., ThunderSVM [17]), few
research work has been dedicated to accelerating structured
SVMs . This work aims to fill the gap by exploiting parallel
and distributed processing to accelerate the training proce-
dure of structured SVMs. Nevertheless, training structured
SVMs efficiently is challenging due to the following reasons.
First, the training procedure is inherently sequential due to
dependencies between optimization steps, hence paralleli-
zation is not trivial. Second, compared with ordinary SVMs,
structured SVMs bear a great burden of communication
due to the relatively large size of constraint information to
be transferred. Third, structured SVM training procedure
may suffer inferior convergence rates, especially for com-
plex problems with a large data set [18].

To overcome the challenges, we present FastSSVM, a par-
allel and distributed structured SVM training solution with
Message Passing Interface (MPI) and OpenMP, with inter-
node and intra-node optimizations. In the distributed
multi-node system level (i.e., inter-node level), we develop
a cascade architecture, where smaller optimizations are
solved independently and the partial results are combined
in a hierarchical fashion to guarantee convergence. We
exploit centralized and local storage of data for efficient
communication given the available resources. In the single
node level (i.e., intra-node level), we develop techniques
to efficiently synchronize the intermediate weights to take

� Jiantong Jiang is with The University of Western Australia, Crawley, WA
6009, Australia, and also with the Zhejiang University, Hangzhou, Zhe-
jiang 310027, China. E-mail: jiantong.jiang@research.uwa.edu.au.

� Zeyi Wen is with The University of Western Australia, Crawley, WA
6009, Australia. E-mail: zeyi.wen@uwa.edu.au.

� Zeke Wang is with Zhejiang University, Hangzhou, Zhejiang 310027,
China. E-mail: wangzeke@zju.edu.cn.

� Bingsheng He is with the National University of Singapore, Singapore
119077. E-mail: hebs@comp.nus.edu.sg.

� Jian Chen is with the South China University of Technology, Guangzhou,
Guangdong 510006, China. E-mail: ellachen@scut.edu.cn.

Manuscript received 9 Nov. 2020; revised 3 July 2021; accepted 6 July 2021.
Date of publication 30 July 2021; date of current version 15 Oct. 2021.
(Corresponding author: Zeyi Wen.)
Recommended for acceptance by J. Zola.
Digital Object Identifier no. 10.1109/TPDS.2021.3101155

1084 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1624-3969
https://orcid.org/0000-0002-1624-3969
https://orcid.org/0000-0002-1624-3969
https://orcid.org/0000-0002-1624-3969
https://orcid.org/0000-0002-1624-3969
https://orcid.org/0000-0003-3370-6053
https://orcid.org/0000-0003-3370-6053
https://orcid.org/0000-0003-3370-6053
https://orcid.org/0000-0003-3370-6053
https://orcid.org/0000-0003-3370-6053
https://orcid.org/0000-0001-8550-9241
https://orcid.org/0000-0001-8550-9241
https://orcid.org/0000-0001-8550-9241
https://orcid.org/0000-0001-8550-9241
https://orcid.org/0000-0001-8550-9241
https://orcid.org/0000-0003-4769-1526
https://orcid.org/0000-0003-4769-1526
https://orcid.org/0000-0003-4769-1526
https://orcid.org/0000-0003-4769-1526
https://orcid.org/0000-0003-4769-1526
mailto:jiantong.jiang@research.uwa.edu.au
mailto:zeyi.wen@uwa.edu.au
mailto:wangzeke@zju.edu.cn
mailto:hebs@comp.nus.edu.sg
mailto:ellachen@scut.edu.cn

advantage of the computing power of multi-cores. More-
over, we (i) alleviate the problem of a large number of con-
straints by handling the constraints in batches and (ii)
mitigate the slow convergence rate by adapting stop condi-
tions being aware of the improvement gained by each train-
ing iteration. In summary, our key contributions in this
paper are as follows.

� We propose a solution for training structured SVMs
with a cascade architecture to split the data set and
to optimize the subsets independently. We theoreti-
cally prove that our solution is guaranteed to con-
verge to a global optimum.

� To improve the efficiency, we design a hybrid MPI
+OpenMP solution, namely FastSSVM, for training
structured SVMs in parallel and distributed environ-
ment. To relieve the communication burden and
achieve high efficiency, we develop a series of novel
techniques, including centralized and local storage
of training data and synchronization of intermediate
weights by temporary separation and sharing.

� We propose mechanisms to alleviate inferior conver-
gence rates for the problems with many constraints,
so that FastSSVM can scale to large scale cluster
systems.

� We conduct extensive experiments to study the
impact of different optimizations and the efficiency
of FastSSVM. Experimental results show that
FastSSVM outperforms the existing solution SVM-
Struct [6] and FSMO [19] by at least four times, and
can achieve three orders of magnitude speedup for
some problems, which demonstrates the effective-
ness of our proposed techniques.

We plan to integrate FastSSVM into ThunderSVM [17]
such that users are able to easily and efficiently leverage the
computing power of a computer cluster when using
FastSSVM to solve their problems.

2 PRELIMINARIES

In this section, we first present details of structured SVMs.
Then we review the cutting-plane [22] algorithm for train-
ing structured SVMs and fixed-threshold sequential mini-
mal optimization (FSMO) [19] algorithm for solving
quadratic programming (QP) optimization problems.

2.1 Structured SVMs

Structured SVMs [6], [7] are commonly used for structured
learning problems. An input xi 2 X is attached with an out-
put yi 2 Y , where elements in Y are structured objects such
as sequences, strings, trees, or bounding boxes. Given a

training set in the input space X and output space Y , the
goal of structured SVM training is to learn a discriminant
function that minimizes the empirical risk. Example tasks
are common in computer vision, natural language process-
ing, and many other application domains, as shown in
Fig. 2. For instance, for object detection and object segmen-
tation structured prediction tasks, the input are both the
images; after the inference procedure of Structured SVMs,
we can get the structured output that are the bounding
boxes and segmentation masks, respectively.

Formally, the structured SVM problem can be expressed
as a quadratic programming (QP) optimization problem
with many constraints, where a margin re-scaling approach
is proposed for the case of arbitrary loss functions [7].

min
ww;�

1

2
jjwwjj2 þ C

n

Xn
i¼1

�i

s.t. 8i; �i � 0; 8i; 8�y 2 Y nyi : ww � dCiðxi; �yÞ � Dðyi; �yÞ � �i;

(1)

where ww is the weight vector, �i is the slack variable to toler-
ate misclassification on training instance xi, C is the regular-
ization constant. For ease of presentation, we define
dCiðxi; �yÞ � Cðxi; yiÞ �Cðxi; �yÞ in the above optimization
problem. Cðx; yÞ is the feature vector extracted from both
the input x and output y, which depends on the nature of
the task and the goal is to learn a function Fwðx; yÞ ¼
ww � dCðx; yÞ. Intuitively, one can think of Fwðx; yÞ as a com-
patibility function that measures how relevant x and y are.
The objective function in (1) is the conventional regularized
risk used in traditional SVMs. The constraints state that for
each training instance ðxi; yiÞ, the score Fwðxi; yiÞ of the cor-
rect structure yi must be greater than or equal to the score
Fwðxi; �yÞ of all incorrect structures �y by a margin Dðyi; �yÞ
minus a slack �i. This optimization problem is referred to as
the primal problem in the convex optimization research
community [23]. For a new input xp, the discriminant func-
tion Fwðx; yÞ learned in the above optimization problem can
be used to predict the structured output yp, which is
yp ¼ argmax�y2Y Fwðxp; �yÞ.

2.1.1 Working Set Selection

The optimization problem (1) has a large (typically expo-
nential or infinite) number of constraints. The number of
constraints equals the number of all possible �y 2 Y nyi for all
instances of the training set, which is task dependent. For
example, for multi-class classification task, #constraint ¼
ð#class� 1Þ �#instance, while for multi-label classifica-
tion task, #constraint ¼ ð2#class � 1Þ �#instance, which
grows at an exponential rate. Therefore, solving the

Fig. 1. Training time of SVM-Struct and FastSSVM for multi-class classi-
fication tasks on publicly available data sets.

Fig. 2. Example tasks for structured SVM learning: (a) and (b) are from
PASCALVOC dataset [20], and (c) is fromWSJ Corpus [21].

JIANG ETAL.: PARALLEL AND DISTRIBUTED STRUCTURED SVM TRAINING 1085

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

problem by considering all the constraints at once is
extremely expensive. One idea to efficient solve the problem
is to select some active constraints to construct the working
set to build an approximation to the whole constraint set.
Then the sub-problem can be solved over the working set
and ensures sufficient accuracy. Joachimes et al. proposed a
cutting-plane method [22] which gradually adds constraints
during the training. The key steps of the algorithm is sum-
marized in Algorithm 1. It maintains a working set S and
proceeds by iteratively alternating between i) finding the
most violated constraint to add to the working set (Line 5
and Line 8) and ii) recomputing the solution of the sub-
problem over the current working set once a constraint has
been added (Line 9). The algorithm terminates when all the
constraints satisfy the optimality condition (Line 12).

Algorithm 1. The Cutting-Plane Algorithm

1 Input: fðxi; yiÞji ¼ 1; 2; � � � ; ng, C, "
2 Si ;; �i 0 for all i ¼ 1; � � � ; n
3 repeat
4 for i ¼ 1; � � � ; n do
5 �y argmax�y2YfDðyi; �yÞ � ww � dCiðxi; �yÞg
6 �i max�y2SifDðyi; �yÞ � ww � dCiðxi; �yÞg
7 if Dðyi; �yÞ � ww � dCiðxi; �yÞ > �i þ " then
8 Si Si [f�yg
9 aS solve the sub-problem over S ¼

S
iSi

10 end if
11 end for
12 until no Si has changed during iteration

2.1.2 The Fixed-Threshold Sequential Minimal

Optimization (FSMO) Algorithm

For structured SVM learning, one important thing is to rec-
ognize a set of support vectors from working set. Solving
the QP problem is to identify all the support vectors. The
common and more intuitive approach for finding the sup-
port vectors is to represent the primal problem (1) in a dual
form [23]. The QP problem represented in the dual form is
shown in problem (2) below.

min
a

LðaÞ ¼ 1

2

X
i;�y6¼yi

X
j;�y6¼yj

ai;�yaj;�ydCiðxi; �yÞ � dCjðxj; �yÞ

�
X
i;�y6¼yi

ai;�yDðyi; �yÞ

s.t. 8i; 0 �
X
i;�y6¼yi

ai;�y �
C

n
; 8i; �y;ai;�y � 0:

(2)

The objective function is solely dependent on a set of a.
Once the as are obtained, the other primal variables can be
easily determined. In analogy to traditional SVMs, we refer
to those predicted �y with non-zero ai;�y as support vectors.
The set of a is called Lagrangian multipliers.

The dual QP problem can be solved by the fixed-thresh-
old sequential minimal optimization (FSMO) algorithm
which is simple and faster than the standard SVM training
algorithms for structured SVM problems as shown by [19].
The key idea is to adjust the value of one a at a time until all

the as satisfy the optimality condition. The pseudocode of
FSMO is given in Algorithm 2. By traversing all the training
instances ðxi; �yÞ in working set S, the algorithm finds the
constraint which violates the KKT conditions [24] shown in
Equation 3, and iteratively updates ai;�y and w.

In this work, we focus on accelerating FSMO algorithm
for solving the QP problem.

Dðyi; �yÞ � ww � dCiðxi; �yÞ ¼ 0; if 0 < ai�y < C
n

Dðyi; �yÞ � ww � dCiðxi; �yÞ > 0; if ai�y ¼ C
n

Dðyi; �yÞ � ww � dCiðxi; �yÞ < 0; if ai�y ¼ 0
(3)

Algorithm 2. FSMO

1 Input: fðxi; yiÞji ¼ 1; 2; � � � ; ng, S, aSaS , C
2 ww ¼

X
i;�y6¼yi

ai�ydCiðxi; �yÞ

3 repeat
4 for ðxi; �yÞ in S do
5 if ðxi; �yÞ violates the KKT condition do

6 ai�y aold
i�y þ

Dðyi;�yÞ�ww�dCiðxi;�yÞ
kdCiðxi;�yÞk2

,
P

�y6¼yi 2 ½0;
C
n	

7 ww wwold þ ðai�y � aold
i�y ÞdCiðxi; �yÞ

8 end if
9 end for
10 until no ai�y changed during iteration

3 OPTIMIZATION FOR BETTER PARALLELISM

We find two major issues in the existing implementations.
First, the number of constraints is large, it is inefficient to
only add one constrant to the working set at each iteration.
Second, the learning procedure may result in inferior con-
vergence rates, especially for problems with many parame-
ters and constraints. In this section, we aim to optimize the
learning procedure to tackle these two major issues.

3.1 Handling Constraints in Batches

The cutting-plane method builds an approximation to the
constraint set by adding the most violated constraint in each
iteration. However, the naive approach that solving the sub-
QP problem once a constraint is added is inefficient. To
speed up the cutting-plane algorithm, our idea is to effi-
ciently build a richer approximation in each iteration.
Instead of adding one constraint in each iteration, we pro-
pose to obtain multiple violated constraints in batches
before solving the sub-QP problem.

To achieve faster convergence, each selected constraint
should violate the optimality condition as much as possible,
while the batch of constraints should be diverse (i.e. the
sub-problem is a good representation of the whole prob-
lem). For instance, if we just add the same constraint multi-
ple times, the duplicated constraints does not contribute to
the convergence rate. Therefore, we scan all instances
within each epoch and find only one most violated con-
straint of each instance to ensure that the constraints being
added at the same iteration belong to different training
instances. Meanwhile, we find that the training time can be
reduced with the increase of batch size in practice. How-
ever, if the batch size is too large, the accuracy is impaired.
Since the total number of constraints is proportional to the

1086 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

number of training instances in Structured SVM training,
we set the batch size be proportional to the number of
instances, i.e., batch size ¼ #instances=100.

3.2 Training Convergence Improvement

In order to alleviate the problem of slow convergence or
non-convergence, we add stop conditions according to the
change of the dual value in two levels, including the inner
FSMO solver and outer cutting plane training.

Inner FSMO Solver. When FSMO has enough iterations
(e.g., 2000 times), we start to check the dual values between
two adjacent iterations. If the change of dual value is less
than a certain threshold (e.g., 0.1) for several consecutive
times (e.g., 5 times), the iteration of FSMO can be stopped in
advance, even if some ai;�y can continue to be updated. We
employ the judgment of the stop criterion only after enough
iterations, so as to avoid the case that the solving procedure
is terminated incorrectly due to the slow optimization at the
beginning of the problem solving. Since FSMO needs to be
called many times, terminating the solving procedure in
advance will hardly affect finding the global optimum.

Outer Cutting-Plane Training.Aftermultiple epochs, some-
times there are new constraints generated, but the change of
the dual values is extremely small. Then it will bring large
computing overhead to continue the iterative procedure,
while the accuracy can hardly be improved. Therefore, we
add a threshold for the change rate of dual value (e.g., 1%),
so that the training procedure can be terminated in advance.

4 OUR FASTSSVM SOLUTIONS

In this section, we present FastSSVM, a parallel and distrib-
uted structured SVM training solution that exploits an MPI
+OpenMP approach. FastSSVM performs two-level optimi-
zations, including distributed multi-node system level (cf.
Section 4.1) and single node level (cf. Section 4.2).

4.1 Distributed Multi-Node System Level
Optimizations

We develop a cascade architecture that splits the input data
set and solves them separately with multiple MPI processes.
The partial results are combined and filtered until the global
optimum is reached. The input working set is stored cen-
trally (cf. Section 4.1.1) or locally (cf. Section 4.1.2) to make
use of available resources of the distributed system and
tackle the challenge of high communication cost between
multiple computing nodes. The proof of convergence of the
cascade architecture is provided in Section 4.1.3.

4.1.1 FastSSVM with Centralized Storage

As mentioned in Section 2.1, structured SVM training
involves two steps: i) working set selection, and ii) solving
the QP problem using FSMO. Meanwhile, we add another
step of computing the information of each constraint when
it is added to the working set, since constraint information
is fixed for one specific constraint and is reused many times.

We find that solving the QP problem is often the most
expensive part of the training procedure. Therefore, we aim
to parallelize the FSMO algorithm. However, parallelization
is not trivial due to dependencies between the computation

steps. Therefore, we developed a cascade architecture [25],
as shown in Fig. 3a, where the optimization problem is split-
ted into smaller and independent sub-problems and the
partial solutions are combined in a hierarchical fashion.

In the cascade architecture, the root process P0 splits the
input working set and scatters to all the processes, as shown
in green lines in Fig. 3a. Each sub-QP problem is then solved
by one computing process individually. Then the non-sup-
port vectors (i.e., training instances with a value equal to 0)
are eliminated to reduce the computation cost, and two sets
of partial support vectors are combined for the next layer,
as shown in yellow lines. This procedure continues until
only one set of support vectors is left. Often such a single
pass can produce satisfactory accuracy, however, to reach
the global optimum, feedback loops are required. Intui-
tively, the instances that are recognized as non-support vec-
tors and thus are eliminated by local computations can be
added back to the working set in the next feedback loops, if
those instances are support vectors globally. Specifically,
each process of the first layer receives the resulting support
vectors from the last layer, as shown in blue lines, and com-
bined with the non-support vectors of the original input
vectors to test for convergence. If the combined support vec-
tors of each process are exactly the same as the input vec-
tors, it has converged to the global optimum. Otherwise, the
training procedure needs to proceed with another pass.

The main advantage of the cascade architecture is that it
eliminates non-support vectors early from the optimization
procedure. In many cases, there are a large number of non-
support vectors, thus one single process does not have to
compute on the whole working set. Meanwhile, for solving
the sub-QP problem on each process, a naive approach is to
initialize the weights ww to zero vector and iteratively find
the solutions. But in the cascade architecture, the weights ww
of a process can be initialized to better starting points
according to the aas, when the process receives the combina-
tion of support vectors from the previous layer.

For FastSSVM with centralized storge, the working set is
stored centrally on the root process, and all the other com-
puting processes do not need to store the entire working
set. In the example shown in Fig. 3a, P0 obtains the entire
working set as the input of the FSMO algorithm, while the
memory storage requirement of processes P1, P2 and P3 can
be significantly reduced in many cases. This can be very
suitable for such a scenario where some computing nodes
can only provide computing resources but not memory
resources. However, such implementation introduces more

Fig. 3. Overview of FastSSVM. “SVx_Ly” indicates the support vectors
produced by process x in layer y.

JIANG ETAL.: PARALLEL AND DISTRIBUTED STRUCTURED SVM TRAINING 1087

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

communication cost. Thus, we propose FastSSVMwith local
storage to deal with the communication overhead next.

4.1.2 FastSSVMWith Local Storage

The efficiency of FastSSVM can be further boosted by opti-
mization on communication. Fig. 3a shows the communica-
tion between processes, where both point-to-point (i.e.,
MPI_Send and MPI_Recv) and collective communication
(i.e.,MPI_Scatter andMPI_Bcast) are included.

During the procedure, both the partial solution aa and the
constraint information need to be transferred. Constraint
information includes the margin Dðyi; �yÞ and the difference
of feature vectors dCiðxi; �yÞ. The main challenge is caused
by dCiðxi; �yÞ. Those vectors are task-dependent and often
have a high dimension. For example, the dimension is Nc �
Nf for the multi-class classification problem, where Nc rep-
resents the number of classes and Nf represents the number
of features. Although they are sparse and we can compress
them into the vectors with 2�Nf dimension, they still
cause expensive overhead for communication, considering
the large amount of constraints. Communication overhead
becomes bottleneck with the increase of parallelism.

To reduce communication overhead, we let all nodes do
the working set selection and compute the information of
constraints iteratively. For FastSSVM with local storage, the
constraint information is stored locally on each process,
then the point-to-point and collective communicating of
constraint information can be avoided. Hence, only the solu-
tion aa, which is relatively small, needs to be transferred
between MPI processes in the cascade architecture, as
shown in Fig. 3b. Thus the communication cost is signifi-
cantly reduced while the computation cost almost remains
the same.

4.1.3 Convergence Analysis

Here, we theoretically analyze that the cascade architecture
is guaranteed to converge to the global optimum.

Let T be a subset of the working set S and LðT Þ denotes
the dual value over T (cf. Problem 2). Let SV ðT Þ be the sup-
port vectors from T . We have 8T
 S; LðT Þ ¼ LðSV ðT ÞÞ �
LðSÞ. Consider a family F of sets of training instances,
where the set T � 2 F is the best set in the family F that
achieves the lowest LðT Þ. We have LðFÞ ¼ LðT �Þ ¼
minT 2FLðT Þ � LðSÞ. In what follows, we first define such a
cascade structured SVM architecture that features a
sequence of families and then prove its convergence.

Definition 1. A cascade structured SVM architecture is a
sequence of families of subsets of working set S, denoted as Fm,
which satisfies the following conditions.

1) For all m > 1, a set U 2 Fm contains all the support
vectors of the best set T �Fm�1

2 Fm�1.
2) For allm, there is a k > m, subject to:

* All the sets U 2 F k contains all the support vec-
tors of the best set in F k�1.

* The union of all the sets in F k is equal to S.

Theorem 1. A cascade architecture (Fm) converges to the global
optimum, i.e., 9m�, 8m > m�, LðFmÞ ¼ LðSÞ.

Proof. According to 1) of Definition 1, SV ðT �Fm�1
Þ
 U, sowe

have LðT �Fm�1
Þ ¼ LðSV ðT �Fm�1

ÞÞ � LðUÞ, which means
LðFm�1Þ ¼ LðT �Fm�1

Þ � LðUÞ � LðFmÞ for all m > 1.
Thus, LðFmÞ is monotonically decreasing. This sequence
is bounded by LðSÞ, so it converges to some value L� �
WðSÞ. There is a l > 0 such that for all m > l, LðFmÞ ¼
L�. According to 2) of Definition 1, there is a k > l, every
set U 2 F kþ1 contains all the support vectors of the best set
T �Fk

2 F k, and LðF kþ1Þ ¼ LðF kÞ ¼ L�. Following the
proof in the literature [25], we knowLðT �Fk

Þ ¼ Lð[U2Fkþ1Þ.
Due to that Lð[U2Fkþ1UÞ ¼ LðSÞ, we can get LðF kÞ ¼
LðT �Fk

Þ ¼ LðSÞ. Since LðFmÞ is monotonically decreasing,
for allm > k, we haveLðFmÞ ¼ LðSÞ. tu

4.2 Single Node Level Optimizations

In the single node level, multiple OpenMP threads can
directly employ the proposed cascade architecture (cf. Sec-
tion 4.2.1). We also develop techniques to efficiently syn-
chronize the intermediate weights to fully utilize the shared
memory systems used by OpenMP (cf. Section 4.2.2).

4.2.1 FastSSVM with separated weights

Inside each MPI process, the OpenMP-based multi-
threaded implementation can directly apply to the cascade
architecture presented in Section 4.1. The implementation is
summarized in pseudo-code in Algorithm 3.

Algorithm 3. FastSSVMWith Separated Weights

1 Input: Sj;aSj ; C; t, constraint info
2 N t
3 repeat
4 #pragma omp parallel num_threads (N)
5 {
6 Slocalj split Sj into N parts
7 initialize ww according to aSlocal

j
8 repeat
9 for constraint i in Slocalj do
10 check the KKT condition
11 if i violates the KKT condition
12 update aji

13 update ww
14 end if
15 end for
16 until no aji changed during iteration
17 }
18 Sj remove non-support vectors
19 N N=2
20 untilN < 1

For MPI process j, the partial working set Sj is the input
of all the t OpenMP threads inside the computing node j.
Inside the OpenMP region (Line 5 to 17), the partial working
set Sj is splitted into N parts (Line 6), and each thread holds
a local weight vector ww which is initialize according to the
local working set Slocalj (Line 7). Then part of the as are
solved by each thread and the ww is updated iteratively until
no aji changed during iteration (Line 8 to 16). After that,
non-support vectors are removed from Sj and then we
reduce N to go to the next layer (Line 18 and Line 19).
According to Section 4.1.3, the cascade structured SVM
architecture can converge to the global optimum.

1088 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

4.2.2 FastSSVM with shared weights

OpenMP codes typically run on shared memory machines.
In a shared memory machine, global memory can be
accessed by all the cores. Information exchanged between
threads uses shared variables. Hence, a more efficient
implementation is to maintain a shared weight vector in all
the threads and to read and write it atomically.

Compared with FastSSVM with separated weights,
FastSSVM with shared weights only has one single layer,
which saves the execution time. More specifically, the
OpenMP parallel region of the separated weights version
(Line 5 to 17) is executed log2t times as shown in Algo-
rithm 3, where t represents the number of OpenMP
threads. For FastSSVM with shared weights, the parallel
region is only executed once with a parallel factor t as the
outer loop (Line 3, Line 19 to 20) is eliminated. Since the
weight vector is shared by all the threads for FastSSVM
with shared weights, we initialize the global weight vec-
tor outside the parallel region, instead of initializing the
local weight vector inside the parallel region (Line 7) for
FastSSVM with separated weights. Meanwhile, we define
a critical area for the update of the weight vector (Line
13) using the compiler directive #pragma omp critical to
ensure that only one thread can read or write the shared
weights at the same time.

4.3 Performance Analysis

The FSMO implementation is the core of FastSSVM, and
the cascade architecture used in our FSMO implementa-
tion causes parallelization overhead that grows with the
number of processes p. For example, these cascade archi-
tectures cannot run faster than VðlogpÞ. Therefore, we
mainly analyze our implementation of FSMO by estimat-
ing overhead of the cascade architecture in this section,
and suggest the usage of multiple nodes to solve the QP
problem.

The FSMO algorithm needs to be invoked many times
during the training. Assume that M is the average number
of constraints to be handled in each call. FSMO iteratively
traverses the constraints and updates the corresponding as
of the constraints, until no a is updated after I iterations.

In the case of single-node implementation, the operation
on the critical path is executed M �D times in each itera-
tion, where D is the dimension of the difference between
feature vectors dCiðxi; �yÞ. Assuming that the execution of
such an operation needs t seconds, then the total time of I
iterations is Ttotalð1Þ ¼ I � t�M �D.

For a L-layer p-node cascade architecture with L ¼
log2pþ 1, suppose that the ratio of support vectors (SVs) is
k, which means there are k�M SVs in total in the training
problem. Those SVs are filtered through each layer. Assume
that the first L� 1 layers have the same filtering ratio while
the last layer handles all the SVs. Specifically, each node in
each layer passes SVs with a same ratio of r to the next
layer, where r ¼ k

1
L�1. Then, in the ith layer, p

2i�1 nodes han-
dle ri�1 �M constraints in parallel, so the computation
time of each node in layer i is:

Tcomp
each ðiÞ ¼ I � t� ri�1 �M

p
2i�1

�D: (4)

For each node of the first L� 1 layers, the indices and val-

ues of as of ri�M
p

2i�1
SVs are passed to the next layer. We denote

the network transmission speed by E bps. Then, the com-

munication time of each node of layer i (i 6¼ L) is:

Tcomm
each ðiÞ ¼ I � ri �M

p
2i�1

� 96

E
; (5)

where 96 is the number of bits needed to transmit an SV
(i.e., 4 bytes for the index of a and 8 bytes for the value of
it). From the above results, we can draw three conclusions.

First, the execution time of the FSMO algorithm increases
as the number of constraints M and the number of features
Nf increase. According to Equation (4), Tcomp

each ðiÞ is propor-
tional toM andD, where the value ofD depends on the task
(e.g.,D ¼ 2�Nf in our implementation).

Second, according to Equations (4) and (5), we get the
total time of I iterations of the L-layer cascade architecture:

TtotalðLÞ ¼
I�M
2L�1 t �D � 1�ð2rÞ

L

1�2r þ r � 96E �
1�ð2rÞL�1

1�2r

� �
; r 6¼ 0:5

I�M
2L�1 ðt �D � Lþ

1
2 � 96E � ðL� 1ÞÞ; r ¼ 0:5

(
;

where r ¼ k
1

L�1. If TtotalðLþ 1Þ � TtotalðLÞ < 0, it means that
the execution time is shortened when we increase the num-
ber of nodes p from 2L�1 to 2L.

Third, it is not recommended to increase nodes if k is
large. According to Equation (4), we can get:

Tcomp
each ðiþ 1Þ � Tcomp

each ðiÞ

¼ I � t�M

p
�D� ðð2� rÞi � ð2� rÞi�1Þ:

When r > 0:5 (i.e., k > 0:5L�1), Tcomp
each ðiþ 1Þ � Tcomp

each ðiÞ >
0. In other words, when the number of SVs is large, the com-
putation of last layer becomes the bottleneck. More pre-
cisely, if the SV ratio k > 50% for a 2-layer cascade, or
k > 25% for a 3-layer cascade, or k > 12:5% for a 4-layer
cascade and so on, the computation time of the last layer is
the longest, which is Tcomp

each ðLÞ ¼ I � t� k�M �D ¼
k� Ttotalð1Þ. Therefore, with the increase of k, Tcomp

each ðLÞ
approaches the total time of the 1-layer cascade Ttotalð1Þ,
and extra communication overhead is also added.

This theoretical analysis provides a general guideline on
multiple nodes. The situation in the experiments is often
more complicated. The values of M, I, D, and k all depends
on the specific problem to be solved, and they are usually
unknown beforehand. In practice, the number of iterations
(i.e., I) for FSMO solver on each node in each layer is actu-
ally different. The fastest node must wait for the slowest
node to finish its iterations. Besides, it is only an ideal case
that each node in each layer holds the same filtering ratio r.
After all, the number of the resulting SVs for different nodes
in the same layer is different. It results in different commu-
nication times and directly leads to different problem scales
for different nodes in the subsequent layers. Moreover, the
number of SVs in different layers is often different.

5 EXPERIMENTAL EVALUATION

In this section, we first present our experimental setup (cf.
Section 5.1), then present the main result by comparing

JIANG ETAL.: PARALLEL AND DISTRIBUTED STRUCTURED SVM TRAINING 1089

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

FastSSVM with the state-of-the-art work (cf. Section 5.2).
After that, we compare different OpenMP and MPI imple-
mentations of FastSSVM and determine the best ones (cf.
Section 5.3). Finally, we compare the performance of
FastSSVM under different configurations (cf. Section 5.4).

5.1 Experimental Setup

We implemented FastSSVM using hybrid MPI and OpenMP
parallellism in C++ for three kinds of applications, includ-
ing multi-class classification, multi-label classification and
object detection. For comparison, we ran SVM-Struct [6]
that uses the Hildreth and D’Espo optimizer [26] for solving
QP problems and we also implemented the original FSMO
algorithm [19]. Specially, for object detection tasks, we used
the API of SVM-Struct and specialized some functions to
implement our own instantiation. We ran our experiments
on a cluster of eight computing nodes connected by 1Gpbs
Ethernet, each with a quad-core 2.67GHz Intel i7920 CPU
and 8GB RAM. The value " ¼ 0:1 was used for all the
experiments as the stopping criterion (cf. Algorithm 1 Line
7). We used publicly available data sets letter, MNIST, pendi-
gits, protein, SensIT Vehicle (acoustic), SensIT Vehicle (seismic),
smallNORB and siam-competition2007 (tmc2007). Besides, for
object detection task, we created a handwritten digit detection
data set (digit) from the MNIST of handwritten digits [27] by
sampling 20000 images from the original data set and put-
ting each of the sampled images into a random location of a
64 * 64 image. The accuracy and training time increase as

the increase of the regularization constant C. We chose C
from 1000, 10000, 100000 and 1000000 for each data set, so
that the selected appropriate C leads to satisfactory accu-
racy with reasonable training time. Table 1 summarizes the
information of the data sets and the parameter C we set.

5.2 Overall Effectiveness

In this section, we mainly provide the overall effectiveness
of our FastSSVM. We first compare FastSSVM with the
existing work (cf. Section 5.2.1), then investigate the impact
of different optimizations (cf. Section 5.2.2), and finally
examine the single node efficiency (cf. Section 5.2.3).

5.2.1 Comparison with State-of-the-art Work

We conducted experiments for FastSSVM, SVM-Struct [6]
and FSMO [19], and Table 2 shows the performance com-
parison in terms of training time and accuracy. Detailed
process of determining the best optimization configuration
for FastSSVM can be found in Sections 5.3 and 5.4. We used
the default OpenMP and MPI implementations, i.e.
FastSSVM with shared weights and local storage, due to
their good efficiency as demonstrated in Section 5.3. We
also set the number of feedback iterations of the cascade
architecture to 1 as demonstrated in Section 5.4.2. Different
data sets get the shortest training time under different con-
figurations as shown in Section 5.4.1. For example, letter
gets the shortest training time when p is 4 and t is 8, while
seismic benefits from p ¼ 8 and t ¼ 8. We set the best config-
uration of p and t for each data set and the results are shown
in the “FastSSVM-parallel on multiple nodes” column.

Comparison of Training Time. For ease of comparison,
Fig. 4a shows the speedups of FastSSVM over SVM-Struct
and FSMO on all the data sets tested. Generally, FastSSVM
achieves four to 34 times speedup compared with the exist-
ing work, and has up to 162 times speedup compared with
SVM-Struct and even more than 1000 speedup over FSMO
on the smallNORB data set. The speedups are mainly due to
the two-level optimizations for parallel and distributed
training and the techniques of adapted batch size and train-
ing convergence improvement, which are not used in [6],
[19]. More specifically, Fig. 4b shows the general speedups
of FastSSVM under different number of computing nodes
over the existing work SVM-Struct. Multiple computing
nodes can speedup up the training procedure, indicating

TABLE 1
Data Set Information and Parameters

Data set Task # instance # class # feature Cð�1000)
letter MC 15,000 26 16 100
MNIST MC 60,000 10 780 10
pendigits MC 119,904 10 16 10
protein MC 17,766 3 357 10
acoustic MC 78,823 3 50 100
seismic MC 78,823 3 50 100
smallNORB MC 24,300 5 2,048 10
tmc2007 ML 43,038 22 30,438 1,000
digit OD 20,000 10 784 100

“MC” indicates Multi-Class task, “ML” indicates Multi-Label task, and
“OD” indicates Object Detection task. The size of bounding box for object
detection is showed in the “# feature” column.

TABLE 2
Training Elapsed Time and Accuracy of FastSSVM and Comparison With Existing Solutions

Data set FastSSVM-parallel
on multiple nodes

FastSSVM-parallel
on a single node

FastSSVM-
sequential

SVM-Struct FSMO

Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy

letter 48.1s 72.20% 59.7s 72.20% 140s 72.12% 372s 69.90% 213s 71.68%
MNIST 144s 92.07% 239s 92.00% 1574s 91.96% 1121s 91.91% 2946s 91.83%
pendigits 208s 90.54% 360s 90.68% 846s 90.60% 33841s 90.88% 16789s 90.79%
protein 21.5s 68.54% 24.3s 68.81% 47.5s 68.81% 201s 68.81% 96s 68.82%
acoustic 233s 67.07% 540s 66.46% 1112s 66.01% 2011s 65.86% 1664s 64.15%
seismic 135s 66.5% 463s 67.03% 836s 66.93% 1681s 66.65% 1245s 64.32%
smallNORB 278s 75.21% 1636s 75.57% 6045s 75.39% 17777s 75.80% 316602s 75.97%
tmc2007 215s 70.65% 340s 70.36% 3144s 68.17% 3565s 63.64% 7256s 68.17%
digit 105523s 64.52% 229877s 66.53% 478596s 67.45% 499189s 66.56% 527474s 69.89%

1090 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

that FastSSVM has good scalability. Detailed experiments
on the effect of optimization configurations can be found in
Section 5.4.

Comparison of Accuracy. We used accuracy as evaluation
indicators for multi-class problems, F1 score for multi-label
problems. For object detection, we used IoU (i.e., Intersec-
tion over Union)-based indicators. An example is viewed as
a correct example if it has the correct predicted label and
the IoU between the ground-truth and the predicted bound-
ing box is larger than 0.5. We can observe that all the imple-
mentations have the similar accuracy, indicating that
FastSSVM can achieve higher efficiency while maintaining
the similar accuracy compared with the existing work.

MNIST and pendigits are well-known real-world data sets
and ideal testbeds for new machine learning methods, and
thus have been extensively used to explore the performance
of neural networks and other deep learning techniques.
DropConnect [28] and MIN [29] are state-of-the-art for
MNIST with and without data augmentation or preprocess-
ing, and obtain the accuracies of 99.79 and 99.76 percent,
respectively; ShapeNet [30] and KerNet [31] are the most
recent work tested on pendigits and obtain the accuracies of
97.7 and 96.71 percent, respectively. We observe that there
are some gaps in terms of accuracy between FastSSVM and
state-of-the-art neural network based solutions. However,
although it has become non-challenge for neural network
based solutions to achieve high accuracies, such networks
are often big and deep with large model sizes and a huge
number of hyper-parameters, which results in weeks or
months to train them on CPUs, and tuning hyper-parame-
ters requires even more extra time. Therefore, such models
are often required to be trained on modern massively paral-
lel GPUs. We have conducted experiments on MNIST for
some small networks, such as LeNet [32], on the same CPU
used in our other experiments. Results show that even some
small networks require more training time than FastSSVM.
Moreover, FastSSVM enjoys a much smaller model size and
much fewer hyper-parameters. For example, the model size
of MNIST is about 60KB, while it requires 200KB even for
the relatively small neural network LeNet.

5.2.2 Impact of Individual Optimizations

As we have discussed in Sections 3 and 4, we have some
optimizations for our FastSSVM. Here, we study their
impacts on the overall efficiency. The optimizations include
(i) Algorithmic optimizations: include adapted batch size
(cf. Section 3.1) and training convergence improvement

(cf. Section 3.2) to deal with a large number of constraints
and inferior convergence rates; (ii) Multi-thread optimiza-
tion: uses OpenMP to utilize the shared memory system (cf.
Section 4.2); (iii) Multi-node optimization: uses MPI to effi-
ciently communicate given the available resources (cf. Sec-
tion 4.1). To investigate where the speedups of FastSSVM to
FSMO originate from, we first switched off the multi-node
optimization under the “FastSSVM-parallel on multiple
nodes”, and the results under the best configuration of t are
shown in the “FastSSVM-parallel on a single node” column.
Then, we switched off the multi-thread optimization,
and the results are shown in the “FastSSVM-sequential”
column.

Fig. 5a shows the contribution of each optimization to the
overall speedups. Overall, 25 percent of the speedup origi-
nates from algorithmic optimizations, 35 percent from
multi-thread optimization, and 40 percent from multi-node
optimization.

5.2.3 Single Node Efficiency

For each data set, we further examine the training time of
each single node (i.e., MPI process) under its best configura-
tion of p and t to illustrate the node efficiency. For ease of
comparison and result visualization, we normalize the total
training time to 100 for each data set and compute the aver-
age and standard deviation of the training time on all the
single nodes. The results are shown in Fig. 5b. We use the
error bar to show the standard deviation.

In general, the average node efficiency is higher than 70
percent and the deviation is basically less than 10 percent
on the data sets tested. In practice, the average node effi-
ciency cannot achieve 100 percent, due to a certain
deviation of workload between different nodes. More spe-
cifically, different nodes have different workloads in the
step of solving QP problem using FSMO, due to the inher-
ent characteristics of the cascade structured SVM architec-
ture. Taking a 4-node 3-layer cascade architecture as an
example (cf. Fig. 3), P0 has to do the computation in all
the 3 layers and hence has the heaviest workload; P2 com-
putes in 2 layers and has the moderate workload; while P1
and P3 only need to compute in the first layer and hence
have the lightest workloads. However, the time of the QP
solving step often can be significantly reduced under the
best configuration, and hence such limitation of the cas-
cade architecture in the QP solving step does not have
much impact.

Fig. 4. Comparsion of training time: (a) shows the speedups of
FastSSVM over existing implementations; (b) shows the speedups of
FastSSVM under different number of computing nodes over SVM-Struct.

Fig. 5. Impact of the individual optimizations and average node
efficiency.

JIANG ETAL.: PARALLEL AND DISTRIBUTED STRUCTURED SVM TRAINING 1091

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

5.3 Determining the Best OpenMP/MPI
Implementation

In this section, we aim at determining the best OpenMP
implementation (cf. Section 5.3.1) and the best MPI imple-
mentation (cf. Section 5.3.2), which serve as the default con-
figuration in the following experiments.

5.3.1 OpenMP: Separated Weights VS Shared Weights

Here, we compare the performance of our two OpenMP-
based implementations. The experiments were conducted
on a single node, and the number of OpenMP threads t
ranges from 1 to 8. Fig. 6 illustrates the training time for dif-
ferent t for both OpenMP implementations, i.e., FastSSVM
with separated weights (cf. Section 4.2.1) and FastSSVM
with shared weights (cf. Section 4.2.2). We observe that the
latter always leads to shorter training time, indicating that
we can employ the weight sharing approach to take more
efficient advantage of the shared memory systems used by
OpenMP. On some data sets such as MNIST and protein, the
improvement is more than 4 times. In the following experi-
ments, the default OpenMP implementation is shared
weights due to its good efficiency.

5.3.2 MPI: Centralized Storage VS Local Storage

We compare the performance of our two MPI-based imple-
mentations here. We set the number of OpenMP threads t
to 8 to fully utilize the computing power of each node, and
the number of MPI processes p ranges from 1 to 8. Fig. 7
shows the training time for the two MPI implementations
on six of the data sets. We observe that FastSSVM with
local storage always leads to higher efficiency on the data
sets tested, because this implementation leverages more
memory to save communication cost. We have the same
observation on all the data sets tested. Particularly, the
training time of the two implementations is almost the
same for the pendigits data set, as shown in Fig. 7c, because
the dimension Nf of pendigits is rather small compared
with the other data sets. As discussed in Section 4.1.2, com-
munication cost is mainly caused by transferring the vector
dCiðxi; �yÞ, whose dimension is 2�Nf in our implementa-
tion. Thus, communication cost of pendigits in FastSSVM
with centralized storage is relatively small, hence the
improvement in FastSSVM with local storage has a limited
effect on the training time. On the contrary, we can observe

a notable difference between the two MPI implementations
for the MNIST and protein data sets (cf. Figs. 7b and 7d),
whose Nf is relatively large.

Communication study. We further investigate the effect of
communication cost on FastSSVM with centralized storage.
We varied the number of MPI processes p and the number
of OpenMP threads t. Fig. 8 shows the computation and
communication time for varying parameter settings with
the MNIST data set as an example. We observed that the
communication overhead increases with the increase of p.
When p ¼ 8 and t ¼ 8, the total training time is 493.9s,
while the communication time occupies 342.5s. Communi-
cation time accounts for more than half of the total time,
becoming the bottleneck of the whole training procedure.
Most of the communication cost is due to transferring
dCiðxi; �yÞ between adjacent layers, as shown in Fig. 3a. The
other data sets also have similar trends. When p reaches 8,
there is usually a non-negligible communication overhead.
Thus, some of the data sets tested achieve their shortest
training time when p ¼ 1 for the centralized storage ver-
sion. Therefore, we develop FastSSVM with local storage
to eliminate the communication of dCiðxi; �yÞ, which
reduces the communication cost by over 90 percent and
shortens the whole training time. For example, in the case
of p ¼ 8 and t ¼ 8 for MNIST, the communication time of
the FastSSVM with local storage is less than 1s. Therefore,
compared with FastSSVM with centralized storage,
FastSSVM with local storage reduces more than 50 percent
of the training time of MNIST.

5.4 Effect of Optimization Configurations

In this section, we first extensively compare the training time
under different parallel granularity and find the shortest
training time that FastSSVM can achieve (cf. Section 5.4.1).

Fig. 6. Comparison of OpenMP-based implementations under different
number of OpenMP threads.

Fig. 7. Comparison of MPI-based implementations under different num-
ber of MPI processes.

Fig. 8. Computation and communication time of FastSSVM with central-
ized storage and shared weights on MNIST.

1092 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

Then, we examine the effect of feedback iterations of the cas-
cade architecture on the convergence behavior and training
time (cf. Section 5.4.2).

5.4.1 Effect of Parallel Granularity

For each data set, we conducted experiments for FastSSVM
with varying number of MPI processes p and OpenMP
threads t. We used the FastSSVM with local storage and
shared weights, which achieves the best efficiency. Consid-
ering the problem scales, we extend p from eight to 32 for
experiments on the smallNORB, tmc2007 and digit data
sets1, while eight computing nodes are enough for other
data sets. Fig. 9 illustrates the training time for varying p
and t on these three data sets. The other data sets also
have similar trends. We have the two key findings
described below.

Varying number of OpenMP threads. Multiple OpenMP
threads can reduce the training time in most of the cases,
indicating our techniques to take advantage of the com-
puting power of multi-cores. In particular, when t
increases from 1 to 2, the training time is significantly
reduced; when t continues to increase to 4 or 8, the train-
ing time tends to decrease slowly and gradually stabi-
lize. In our experiments, six out of nine data sets achieve
the shortest training time when t reaches 8. The excep-
tions include the tmc2007, pendigits and acoustic data sets
which achieve the shortest training time when t ¼ 4. In

the case of the three data sets, the training time is similar
when t ¼ 4 and t ¼ 8.

Varying number of MPI processes. An appropriate number
of MPI processes can reduce the training time, indicating
that FastSSVM can be efficiently scaled to multiple comput-
ing nodes. Fig. 9 shows that the three data sets achieve the
shortest training time when p ¼ 32; other data sets also
achieve the shortest training time when p reaches 4 or 8. In
particular, when the number of MPI processes p increases
from 1 to 2, the training time increases in some cases. One
reason is that in the two-layer cascade structured SVM
architecture, the procedure of non-support vector elimina-
tion is only performed twice; when p reaches 4 and 8, this
procedure is performed 6 times and 14 times, respectively,
thus we can usually obtain a shorter training time. With the
increase of p, the training time tends to gradually stabilize,
because the main limitation of the cascade architecture is
the last layer that consists of one single sub-QP optimization
procedure and its size has a lower bound given by the num-
ber of support vectors.

5.4.2 Effect of Feedback Iterations

We examine the effect of feedback iterations of the cas-
cade structured SVM architecture on the convergence
behavior and execution time. We set the best configura-
tion of p and t for each data set and the maximum num-
ber of feedback iterations Nm varies from one to five. We
use the accuracy to show the final loss of different Nm.
Fig. 10 uses two example data sets to show the accuracy
and training time trend for different number of iterations
of the cascade architecture. The implementation we used
is FastSSVM with local storage and shared weights. We
observe that with the increase of Nm, the training time
increases in most of the cases, while the accuracy main-
tains similar. The exceptions are protein and seismic data
sets, where the training time does not increase monotoni-
cally with Nm. The main reason is that as Nm increases,
the better convergence leads to a decrease in the number
of epochs (where an epoch represents one complete pass
through the training data set). Taking protein (cf.
Figs. 10b) as an example, when the number of feedback
iteration Nm ¼ 1, the training procedure spends 8 epochs;
when Nm reaches 2, it only takes 7 epochs for the train-
ing procedure, reducing the total training time to some
extent. In general, practically a single pass through the
cascade architecture can produce sufficient accuracy.
Therefore, we serve one iteration without feedback loops
as the default configuration. As one iteration in the

Fig. 9. Training time on different parallel granularity for FastSSVM with
local storage and shared weights.

Fig. 10. Accuracy and training time over # of feedback iterations of
FastSSVM with local storage and shared weights.

1. Since the original cluster only has eight computing nodes, we ran
experiments on these three data sets on Oracle Cloud Infrastructure.
We created 32 computing instances, each with a 8-core 2.00GHz Intel
Xeon Platinum 8167M CPU.

JIANG ETAL.: PARALLEL AND DISTRIBUTED STRUCTURED SVM TRAINING 1093

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

cascade architecture is computationally expensive, our
solution tends to be optimal because the minimal num-
ber of iteration is needed. This provides a relatively sim-
ple way for solving problems.

6 RELATED WORK

This study mainly focuses on improving the efficiency of a
machine learning algorithm: structured SVMs. Structured
SVM generalizes the traditional SVM to new formulations
that has structured outputs, thus can be used to solve
structured prediction tasks in a number of areas. In what
follows, we categorize the most relevant related work into
three categories: the studies dedicated to training SVMs,
the studies dedicated to training structured SVMs, and the
studies dedicated to solving structured prediction prob-
lems in general.

Training SVMs. The SMO algorithm [33] was proposed in
1998, which is a simple but efficient solution, and hence it is
used in LibSVM [34], WEKA and ThunderSVM [17]. Other
studies [35], [36], [37] in parallel or distributed SVM training
have been proposed for improving the efficiency of SVMs.
Catanzaro et al. [38] first introduced GPUs for SVM training.
Wen et al. [39], [40] proposed GPU based SVMs with pre-
computing the whole kernel matrix which is stored in high-
speed storage (e.g., SSDs). Another study [41] further
improves the algorithms by avoiding storage of the whole
kernel matrix. However, these studies are to optimize ordi-
nary SVMs which aim to solve binary classification and
regression problems. Those approaches are not applicable
to complex structured output problems.

Training Structured SVMs. Some approaches [42], [43], [44]
have been proposed for efficient structured SVM learning. For
example, Balamurugan et al. [44] proposed SDM,which traver-
ses the training data set sequentially and optimizes the dual
variable corresponding to one instance at a time. Chang et al.
[45] proposed a parallel learning algorithm DEMI-DCD. It
decouples the model update steps from the inference steps
during learning. However, it solves the inference problems in
parallel while using one thread for learning. This approach
does not deal with the large number of constraints andmay be
slow for large data sets. Since 2006, the community has been
overwhelmed by deep learning, particularly DNN based tech-
niques. Little research effort has been dedicated to traditional
machine learning. Structured SVMs provide approaches to
solve complex problems in many domains. This work focuses
on improve the efficiency of structured SVM training to boost
the applications of structured SVMs.

Solving Structured Prediction Problems. Various approaches
have been proposed for solving structured prediction tasks.
Like structured SVMs, some approaches are the extension of
the standard classification methods [46]. And some methods
are the integration with deep learning [47]. There are also
some search based methods for learning structured output
models. Those methods learn different forms of knowledge,
including greedy policies [48], heuristic and cost func-
tions [49], coarse-to-fine knowledge [50], and so on. This
work aims to specifically improve the training efficiency of
structured SVMs.

7 CONCLUSION AND FUTURE WORK

In this paper, we have developed an efficient solution for
structured SVM training and elaborated the significance of
accelerating the training procedure of structured SVMs. The
main challenges of developing a fast solution for training
structured SVMs include (i) a large number of constraints for
the QP problem, (ii) inferior convergence rates for large and
complex structured problems, and (iii) high communication
cost to transfer intermediate results on a distributed multi-
core system. FastSSVM leverages a series of techniques to
alleviate the challenges and achieve high efficiency, includ-
ing adapted batch size, training convergence improvement,
local storage of constraint information, and sharing interme-
diate weights. Our experiments on publicly available data
sets have shown that FastSSVMoutperforms the existing sol-
utions by at least four times, and by two to three orders of
magnitude in some cases, indicating the effectiveness of our
solution on distributed computer systems. This work can
potentially boost the popularity of structured SVMs—a fun-
damental machine learning algorithm.

The total training time of FastSSVM can be further
reduced by carefully optimizing the batch size in working
set selection, and we consider this direction as our future
work. Moreover, FastSSVM spends much time on traversing
all possible constraints. We will further investigate effective
approximation methods for improving FastSSVM on large
and complex problems.

ACKNOWLEDGEMENTS

This work was supported by the National Key R&D Pro-
gram of China under Grant 2020AAA0103800, a MoE AcRF
Tier 1 under Grant T1 251RES1824 in Singapore, the Nati-
onal Natural Science Foundation of China under Grant
62072186, and the Guangdong Basic and Applied Basic
Research Foundation under Grant 2019B1515130001. This
research is also supported by Oracle for Research, Australia.

REFERENCES

[1] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz,
and D. Terzopoulos, “Image segmentation using deep learning: A
survey,” IEEE Trans. Pattern Anal. Mach. Intell., to be published,
doi: 10.1109/TPAMI.2021.3059968.

[2] Y. Guo, H.Wang, Q. Hu, H. Liu, L. Liu, andM. Bennamoun, “Deep
learning for 3D point clouds: A survey,” IEEE Trans. Pattern Anal.
Mach. Intell., to be published, doi: 10.1109/TPAMI.2020.3005434.

[3] S. Sivapatham, R. Ramadoss, A. Kar, and B. Majhi, “Monaural
speech separation using ga-DNN integration scheme,” Appl.
Acoust., vol. 160, 2020, Art. no. 107140.

[4] S. Sivapatham, A. Kar, and R. Ramadoss, “Performance analysis
of various training targets for improving speech quality and
intelligibility,” Appl. Acoust., vol. 175, 2021, Art. no. 107817.

[5] M. E. Mavroforakis and S. Theodoridis, “A geometric approach to
support vector machine (SVM) classification,” IEEE Trans. Neural
Netw., vol. 17, no. 3, pp. 671–682, May 2006.

[6] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support
vector machine learning for interdependent and structured output
spaces,” in Proc. Int. Conf.Mach. Learn., 2004, Art. no. 104.

[7] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
margin methods for structured and interdependent output varia-
bles,” J. Mach. Learn. Res., vol. 6, pp. 1453–1484, 2005.

[8] M. Le Nguyen, A. Shimazu, and X.-H. Phan, “Semantic parsing
with structured SVM ensemble classification models,” in Proc.
COLING/ACL 2006 Main Conf. Poster Sessions, 2006, pp. 619–626.

1094 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPAMI.2021.3059968
http://dx.doi.org/10.1109/TPAMI.2020.3005434

[9] M. K. Sharma and V. S. Dhaka, “Segmentation of handwritten
words using structured support vector machine,” Pattern Anal.
Appl., vol. 23, pp. 1355–1367, 2020.

[10] S. Nowozin and C. H. Lampert, “Structured learning and predic-
tion in computer vision,” Foundations Trends� Comput. Graph. Vis.,
vol. 6, no. 3–4, pp. 185–365, 2011.

[11] S. Branson, O. Beijbom, and S. Belongie, “Efficient large-scale
structured learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2013, pp. 1806–1813.

[12] S. Hare et al., “Struck: Structured output tracking with kernels,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 10, pp. 2096–
2109, Oct. 2016.

[13] J. Ning, J. Yang, S. Jiang, L. Zhang, and M.-H. Yang, “Object track-
ing via dual linear structured SVM and explicit feature map,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2016, pp. 4266–4274.

[14] D. Li, Y. Ju, and Q. Zou, “Protein folds prediction with hierarchi-
cal structured SVM,” Current Proteomics, vol. 13, no. 2, pp. 79–85,
2016.

[15] W. Lin, D. Ji, and Y. Lu, “Disorder recognition in clinical texts
using multi-label structured SVM,” BMC Bioinf., vol. 18, no. 1,
p. 75, 2017.

[16] Y. Zhu, X. Zhu, M. Kim, D. Shen, and G. Wu, “Early diagnosis of
alzheimer’s disease by joint feature selection and classification on
temporally structured support vector machine,” in MICCAI, Ber-
lin, Germany: Springer, 2016, pp. 264–272.

[17] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast
SVM library on GPUs and cpus,” JMLR, vol. 19, no. 1, pp. 797–
801, 2018.

[18] C.-P. Lee, K.-W. Chang, S. Upadhyay, and D. Roth, “Distributed
training of structured SVM,” 2015, arXiv:1506.02620.

[19] C. Lee and M.-G. Jang, “Fast training of structured SVM using
fixed-threshold sequential minimal optimization,” ETRI J., vol. 31,
no. 2, pp. 121–128, 2009.

[20] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (VOIC) challenge,”
Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.

[21] E. Charniak, B. D. N. Ge, K. Hall, and M. Johnson, “BLLIP 1987–89
WSJ corpus release 1 LDC2000t43,” Philadelphia: Linguistic Data
Consortium, 2000.

[22] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of
structural SVMs,”Mach. Learn., vol. 77, no. 1, pp. 27–59, 2009.

[23] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[24] B. Scholkopf and A. J. Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge,
MA, USA: MIT Press, 2001.

[25] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik,
“Parallel support vector machines: The cascade SVM,” in Proc.
17th Int. Conf. Neural Inf. Process. Syst., 2005, pp. 521–528.

[26] I. N. Bronshtein and K. A. Semendyayev,Handbook of Math. Berlin,
Germany: Springer, 2013.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[28] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus,
“Regularization of neural networks using dropconnect,” in Proc.
30th Int. Conf. Int. Conf. Mach. Learn., 2013, pp. 1058–1066.

[29] J.-R. Chang and Y.-S. Chen, “Batch-normalized maxout network
in network,” 2015, arXiv:1511.02583.

[30] G. Li, B. Choi, J. Xu, S. S. Bhowmick, K.-P. Chun, and G. L. Wong,
“Shapenet: A shapelet-neural network approach for multivariate
time series classification,” in Proc. AAAI Conf. Artif. Intell., 2021.

[31] I. Lauriola, C. Gallicchio, and F. Aiolli, “Enhancing deep neural
networks via multiple kernel learning,” Pattern Recognit., vol. 101,
2020, Art. no. 107194.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[33] J. Platt, “Sequential minimal optimization: A fast algorithm for
training support vector machines,” 1998.

[34] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1–27:27,
2011.

[35] J.-P. Zhang, Z.-W. Li, and J. Yang, “A parallel SVM training algo-
rithm on large-scale classification problems,” in Proc. Int. Conf.
Mach. Learn. Cybern., vol. 3, pp. 1637–1641, 2005.

[36] F. €O. Çatak and M. E. Balaban, “A MapReduce-based distributed
SVM algorithm for binary classification,” Turkish J. Elect. Eng.
Comput. Sci., vol. 24, no. 3, pp. 863–873, 2016.

[37] A. Navia-V�azquez, D. Gutierrez-Gonzalez, E. Parrado-Hern�an-
dez, and J. Navarro-Abellan, “Distributed support vector
machines,” IEEE Trans. Neural Netw., vol. 17, no. 4, 2006.

[38] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast Support Vector
Machine training and classification on graphics processors,” in
Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 104–111.

[39] Z. Wen, R. Zhang, K. Ramamohanarao, J. Qi, and K. Taylor,
“MASCOT: Fast and highly scalable SVM cross-validation using
GPUs and SSDs,” in Proc. IEEE Int. Conf. Data Mining, 2014,
pp. 580–589.

[40] Z. Wen, R. Zhang, K. Ramamohanarao, and L. Yang, “Scalable
and fast SVM regression using modern hardware,” World Wide
Web, vol. 21, no. 2, pp. 261–287, 2018.

[41] Z. Wen, J. Shi, B. He, J. Chen, and Y. Chen, “Efficient multi-class
probabilistic SVMs on GPUs,” IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 9, pp. 1693–1706, Sep. 2019.

[42] T. Finley and T. Joachims, “Training structural SVMs when exact
inference is intractable,” in Proc. 25th Int. Conf. Mach. Learn., 2008,
pp. 304–311.

[43] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-
coordinate frank-wolfe optimization for structural SVMs,” in Proc.
30th Int. Conf. Int. Conf. Mach. Learn., 2013, pp. 53–61.

[44] P. Balamurugan, S. Shevade, S. Sundararajan, and S. S. Keerthi, “A
sequential dual method for structural SVMs,” in Proc. SIAM Int.
Conf. Data Mining, 2011, pp. 223–234.

[45] K.-W. Chang, V. Srikumar, and D. Roth, “Multi-core structural
SVM training,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov-
ery Databases, 2013, pp. 401–416.

[46] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” 2001.

[47] D. Belanger, B. Yang, and A. McCallum, “End-to-end learning for
structured prediction energy networks,” 2017, arXiv:1703.05667.

[48] K.-W. Chang, A. Krishnamurthy, A. Agarwal, H. Daume, and J.
Langford, “Learning to search better than your teacher,” in Proc.
Int. Conf. Mach. Learn., 2015, pp. 2058–2066.

[49] J. R. Doppa, A. Fern, and P. Tadepalli, “HC-search: A learning
framework for search-based structured prediction,” J. Artif. Intell.
Res., vol. 50, pp. 369–407, 2014.

[50] D. Weiss and B. Taskar, “Structured prediction cascades,” in Proc.
Int. Conf. Artif. Intell. Statist., 2010, pp. 916–923.

Jiantong Jiang recieved the master’s degree
from Northeastern University, in China. She is
currently working toward the PhD degree at the
University of Western Australia. Before com-
mencing her PhD study, she was a research
assistant with the School of Software Engineer-
ing, Zhejiang University, China. Her research
interests include high-performance computing
and machine learning.

Zeyi Wen recieved the PhD degree from the Uni-
versity of Melbourne. He is currently a lecturer
with the University of Western Australia (UWA).
Before joining UWA, he worked as a research fel-
low with the National University of Singapore
from 2017 and 2019. He is working as a research
fellow with the University of Melbourne. His
research interests include parallel computing,
machine learning and data mining.

JIANG ETAL.: PARALLEL AND DISTRIBUTED STRUCTURED SVM TRAINING 1095

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

Zeke Wang received the PhD degree from Zhe-
jiang University, China, in 2011. He is currently a
research professor with Collaborative Innovation
Center of Artificial Intelligence, Department of
Computer Science, Zhejiang University, China.
His current research interests include building
machine learning systems using FPGAs.

Bingsheng He received the bachelor’s degree in
computer science from Shanghai Jiao Tong Uni-
versity, in 2003, and the PhD degree in computer
science from the Hong Kong University of Science
and Technology, in 2008. He is currently an asso-
ciate professor with the School of Computing,
National University of Singapore. His research
interests include high-performance computing,
distributed and parallel systems, and database
systems.

Jian Chen received the BS and PhD degrees in
computer science from Sun Yat-Sen University,
China, in 2000 and 2005, respectively. She is cur-
rently a professor with the School of Software
Engineering, South China University of Technol-
ogy where she started as an assistant professor
in 2005. Her research interests include summa-
rized as developing effective and efficient data
analysis techniques for complex data and the
related applications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1096 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Western Australia. Downloaded on August 22,2022 at 12:36:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

